Question
See code below demonstrating the issue. A simple pandas dataframe is created with one row and one column containing one datetime instance. As you can see, calling timestamp()
on the datetime object returns 1581894000.0
. Selecting the datetime object through the dataframe and calling timestamp()
gives 1581897600.0
. When using pandas apply
function to call datetime.timestamp
on each row of column 'date', the return value becomes 1581894000.0
. I would expect to get the same timestamp
value in all situations.
In[19]: d = datetime(2020, 2, 17)
In[20]: d.timestamp()
Out[20]: 1581894000.0 <----------------------------------+
In[21]: df = pd.DataFrame({'date': [d]}) |
In[22]: df |
Out[22]: |
date |
0 2020-02-17 |
In[23]: df['date'][0] |
Out[23]: Timestamp('2020-02-17 00:00:00') |
In[24]: df['date'][0].timestamp() |
Out[24]: 1581897600.0 <---------------------- These should be the same
In[25]: df['date'].apply(datetime.timestamp) |
Out[25]: |
0 1.581894e+09 |
Name: date, dtype: float64 |
In[26]: df['date'].apply(datetime.timestamp)[0] |
Out[26]: 1581894000.0 <----------------------------------+
Edit
Thanks to input from @ALollz, using to_datetime
and Timestamp
from pandas, as shown below seems to fix the problem.
In[15]: d = pd.to_datetime(datetime(2020,2,17))
In[16]: d.timestamp()
Out[16]: 1581897600.0
In[17]: df = pd.DataFrame({'date': [d]})
In[18]: df
Out[18]:
date
0 2020-02-17
In[19]: df['date'][0]
Out[19]: Timestamp('2020-02-17 00:00:00')
In[20]: df['date'][0].timestamp()
Out[20]: 1581897600.0
In[21]: df['date'].apply(pd.Timestamp.timestamp)
Out[21]:
0 1.581898e+09
Name: date, dtype: float64
In[22]: df['date'].apply(pd.Timestamp.timestamp)[0]
Out[22]: 1581897600.0