import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import preprocessing
data = pd.read_csv('Boston.csv')
X1 = data.iloc[:,1:5]
X2 = data.iloc[:,6:14]
X = pd.concat([X1,X2],axis=1)
y = pd.DataFrame(data.iloc[:,14])
'''
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X = sc_X.fit_transform(X)
'''
#X = (X - X.mean(axis=0)) / X.std(axis=0)
X = preprocessing.normalize(X)
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.1)
import keras
from keras.models import Sequential
from keras.layers import Dense
# Initialising the ANN
classifier = Sequential()
classifier.add(Dense(output_dim = 512, init = 'normal', activation = 'relu', input_dim = 12))
classifier.add(Dense(output_dim = 128, init = 'normal', activation = 'relu'))
classifier.add(Dense(output_dim = 1, init = 'normal', activation = 'relu'))
classifier.compile(optimizer = 'adam', loss = 'mse', metrics = ['accuracy'])
classifier.fit(X_train, y_train, batch_size = 10, nb_epoch = 100)
I have tried data preprocessing and adding more layers/neurons but still i'm getting accuracy below 2%.what is wrong with my code. I Have tried diffrent methods for preprocessing like standard scaler, normalization etc. I have also tried many activation functions like relu, linear, sigmoid. This is my first time developing a neural network so sorry the messy code...
EDIT: Dataset used is boston housing dataset. https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html