As already noted, you need to change the algorithm into a digit-by-digit one (there are some examples in the Wikipedia page about the methods of computing of the square roots) and use an arbitrary precision arithmetic library to perform the calculations (for instance, GMP).
In the following snippet I implemented the before mentioned algorithm, using GMP (but not the square root function that the library provides). Instead of calculating one decimal digit at a time, this implementation uses a larger base, the greatest multiple of 10 that fits inside an unsigned long
, so that it can produce 9 or 18 decimal digits at every iteration.
It also uses an adapted Newton method to find the actual "digit".
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <gmp.h>
unsigned long max_ul(unsigned long a, unsigned long b)
{
return a < b ? b : a;
}
int main(int argc, char *argv[])
{
// The GMP functions accept 'unsigned long int' values as parameters.
// The algorithm implemented here can work with bases other than 10,
// so that it can evaluate more than one decimal digit at a time.
const unsigned long base = sizeof(unsigned long) > 4
? 1000000000000000000
: 1000000000;
const unsigned long decimals_per_digit = sizeof(unsigned long) > 4 ? 18 : 9;
// Extract the number to be square rooted and the desired number of decimal
// digits from the command line arguments. Fallback to 0 in case of errors.
const unsigned long number = argc > 1 ? atoi(argv[1]) : 0;
const unsigned long n_digits = argc > 2 ? atoi(argv[2]) : 0;
// All the variables used by GMP need to be properly initialized before use.
// 'c' is basically the remainder, initially set to the original number
mpz_t c;
mpz_init_set_ui(c, number);
// At every iteration, the algorithm "move to the left" by two "digits"
// the reminder, so it multplies it by base^2.
mpz_t base_squared;
mpz_init_set_ui(base_squared, base);
mpz_mul(base_squared, base_squared, base_squared);
// 'p' stores the digits of the root found so far. The others are helper variables
mpz_t p;
mpz_init_set_ui(p, 0UL);
mpz_t y;
mpz_init(y);
mpz_t yy;
mpz_init(yy);
mpz_t dy;
mpz_init(dy);
mpz_t dx;
mpz_init(dx);
mpz_t pp;
mpz_init(pp);
// Timing, for testing porpuses
clock_t start = clock(), diff;
unsigned long x_max = number;
// Each "digit" correspond to some decimal digits
for (unsigned long i = 0,
last = (n_digits + decimals_per_digit) / decimals_per_digit + 1UL;
i < last; ++i)
{
// Find the greatest x such that: x * (2 * base * p + x) <= c
// where x is in [0, base), using a specialized Newton method
// pp = 2 * base * p
mpz_mul_ui(pp, p, 2UL * base);
unsigned long x = x_max;
for (;;)
{
// y = x * (pp + x)
mpz_add_ui(yy, pp, x);
mpz_mul_ui(y, yy, x);
// dy = y - c
mpz_sub(dy, y, c);
// If y <= c we have found the correct x
if ( mpz_sgn(dy) <= 0 )
break;
// Newton's step: dx = dy/y' where y' = 2 * x + pp
mpz_add_ui(yy, yy, x);
mpz_tdiv_q(dx, dy, yy);
// Update x even if dx == 0 (last iteration)
x -= max_ul(mpz_get_si(dx), 1);
}
x_max = base - 1;
// The actual format of the printed "digits" is up to you
if (i % 4 == 0)
{
if (i == 0)
printf("%lu.", x);
putchar('\n');
}
else
printf("%018lu", x);
// p = base * p + x
mpz_mul_ui(p, p, base);
mpz_add_ui(p, p, x);
// c = (c - y) * base^2
mpz_sub(c, c, y);
mpz_mul(c, c, base_squared);
}
diff = clock() - start;
long int msec = diff * 1000L / CLOCKS_PER_SEC;
printf("\n\nTime taken: %ld.%03ld s\n", msec / 1000, msec % 1000);
// Final cleanup
mpz_clear(c);
mpz_clear(base_squared);
mpz_clear(p);
mpz_clear(pp);
mpz_clear(dx);
mpz_clear(y);
mpz_clear(dy);
mpz_clear(yy);
}
You can see the outputted digits here.