You can try this.
[sum(i,[]) for i in lists_of_lists]
[[1, 2], [3, 5], [6, 6]]
Some timeit
analysis on the suggested solutions (python 3.7 and windows 10)
Benchmarking list =[[[1],[2]],[[3],[5]],[[6],[6]]]
In [48]: timeit [sum(i,[]) for i in lists_of_lists]
914 ns ± 103 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
In [49]: timeit [[i for inner in sub_lists for i in inner] for sub_lists in lists_of_lists]
1.25 µs ± 136 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
In [64]: timeit list(starmap(concat, lists_of_lists))
639 ns ± 30 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
In [70]: timeit list(map(list, map(chain.from_iterable, lists_of_lists)))
1.55 µs ± 57 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
Benchmarking list = l=[[[1],[2]],[[3],[5]],[[6],[6]]]*1000000
(3 million).
In [60]: timeit [sum(i,[]) for i in l]
1.06 s ± 68 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [61]: timeit [[i for i in j] for j in l]
1.13 s ± 64.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [65]: timeit list(starmap(concat, l))
595 ms ± 15.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [71]: timeit list(map(list, map(chain.from_iterable, l)))
1.39 s ± 101 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)