I am trying to shorten my code in a very repetitive task, which is seasonally adjusting a bunch of series in pandas. The code I am using (and works) is
pibsa_andalucia = sm.tsa.x13_arima_analysis(endog = ccaa[ccaa['region'] == 'Andalucia']['rpib'].dropna(),
x12path = path_to_x13, prefer_x13 = True, freq = "Q")
pibsa_galicia = sm.tsa.x13_arima_analysis(endog = ccaa[ccaa['region'] == 'Galicia']['rpib'].dropna(),
x12path = path_to_x13, prefer_x13 = True, freq = "Q")
pibsa_cantabria = sm.tsa.x13_arima_analysis(endog = ccaa[ccaa['region'] == 'Cantabria']['rpib'].dropna(),
x12path = path_to_x13,prefer_x13 = True, freq = "Q")
pibsa_cataluna = sm.tsa.x13_arima_analysis(endog = ccaa[ccaa['region'] == 'Cataluna']['rpib'].dropna(),
x12path = path_to_x13,prefer_x13 = True, freq = "Q")
pibsa_larioja = sm.tsa.x13_arima_analysis(endog = ccaa[ccaa['region'] == 'La Rioja']['rpib'].dropna(),
x12path = path_to_x13,prefer_x13 = True, freq = "Q")
pibsa_madrid = sm.tsa.x13_arima_analysis(endog = ccaa[ccaa['region'] == 'Madrid']['rpib'].dropna(),
x12path = path_to_x13,prefer_x13 = True, freq = "Q")
pibsa_navarra = sm.tsa.x13_arima_analysis(endog = ccaa[ccaa['region'] == 'Navarra']['rpib'].dropna(),
x12path = path_to_x13,prefer_x13 = True, freq = "Q")
pibsa_euskadi = sm.tsa.x13_arima_analysis(endog = ccaa[ccaa['region'] == 'Euskadi']['rpib'].dropna(),
x12path = path_to_x13,prefer_x13 = True, freq = "Q")
pibsa_espana = sm.tsa.x13_arima_analysis(endog = ccaa[ccaa['region'] == 'Espana']['rpib'].dropna(),
x12path = path_to_x13,prefer_x13 = True, freq = "Q")
The code that ideally would like to run is
regions = ['Andalucia', 'Cantabria', 'Cataluna', ... ]
for reg in regions:
pibsa_'reg' = sm.tsa.x13_arima_analysis(endog =
ccaa[ccaa['region'] == 'reg']['rpib'].dropna(),
x12path = path_to_x13, prefer_x13 = True,
freq = "Q")
I am new to python and not really sure if this is feasible Could anybody guide me in this issue.
Thanks