I am trying to merge 2 dataframes with multiple columns each based on matching values at one of the columns on each of them. This code from @Erfan does a great job fuzzymatching the target columns, but is there a way to carry the rest of columns too. https://stackoverflow.com/a/56315491/12802642
Dataframe
df1 = pd.DataFrame({'Key':['Apple Souce', 'Banana', 'Orange', 'Strawberry', 'John tabel']})
df2 = pd.DataFrame({'Key':['Aple suce', 'Mango', 'Orag','Jon table', 'Straw', 'Bannanna', 'Berry'],
'Key23':['1', '2', '3','4', '5', '6', '7'})
Match function from @Erfan as described in link above
def fuzzy_merge(df_1, df_2, key1, key2, threshold=90, limit=2):
"""
df_1 is the left table to join
df_2 is the right table to join
key1 is the key column of the left table
key2 is the key column of the right table
threshold is how close the matches should be to return a match, based on Levenshtein distance
limit is the amount of matches that will get returned, these are sorted high to low
"""
s = df_2[key2].tolist()
m = df_1[key1].apply(lambda x: process.extract(x, s, limit=limit))
df_1['matches'] = m
m2 = df_1['matches'].apply(lambda x: ', '.join([i[0] for i in x if i[1] >= threshold]))
df_1['matches'] = m2
return df_1
Calling the function
df = fuzzy_merge(df1, df2, 'Key', 'Key', threshold=80, limit=1)
df.sort_values(by='Key',ascending=True).reset_index()
Result
index Key matches
0 Apple Souce Aple suce
1 Banana Bannanna
2 John tabel
3 Orange
4 Strawberry Straw
Desired result
index Key matches Key23
0 Apple Souce Aple suce 1
1 Banana Bannanna 6
2 John tabel
3 Orange
4 Strawberry Straw 5