Imagine there is a dataframe:
id date balance_total transaction_total
0 1 01/01/2019 102.0 -1.0
1 1 01/02/2019 100.0 -2.0
2 1 01/03/2019 100.0 NaN
3 1 01/04/2019 100.0 NaN
4 1 01/05/2019 96.0 -4.0
5 2 01/01/2019 200.0 -2.0
6 2 01/02/2019 100.0 -2.0
7 2 01/04/2019 100.0 NaN
8 2 01/05/2019 96.0 -4.0
here is the create dataframe command:
import pandas as pd
import numpy as np
users=pd.DataFrame(
[
{'id':1,'date':'01/01/2019', 'transaction_total':-1, 'balance_total':102},
{'id':1,'date':'01/02/2019', 'transaction_total':-2, 'balance_total':100},
{'id':1,'date':'01/03/2019', 'transaction_total':np.nan, 'balance_total':100},
{'id':1,'date':'01/04/2019', 'transaction_total':np.nan, 'balance_total':100},
{'id':1,'date':'01/05/2019', 'transaction_total':-4, 'balance_total':np.nan},
{'id':2,'date':'01/01/2019', 'transaction_total':-2, 'balance_total':200},
{'id':2,'date':'01/02/2019', 'transaction_total':-2, 'balance_total':100},
{'id':2,'date':'01/04/2019', 'transaction_total':np.nan, 'balance_total':100},
{'id':2,'date':'01/05/2019', 'transaction_total':-4, 'balance_total':96}
]
)
How could I check if each id has consecutive dates or not? I use the "shift" idea here but it doesn't seem to work:
Calculating time difference between two rows
df['index_col'] = df.index
for id in df['id'].unique():
# create an empty QA dataframe
column_names = ["Delta"]
df_qa = pd.DataFrame(columns = column_names)
df_qa['Delta']=(df['index_col'] - df['index_col'].shift(1))
if (df_qa['Delta'].iloc[1:] != 1).any() is True:
print('id ' + id +' might have non-consecutive dates')
# doesn't print any account => Each Customer's Daily Balance has Consecutive Dates
break
Ideal output:
it should print id 2 might have non-consecutive dates
Thank you!