Here's an example implementation. It might be possible to do this even shorter or more elegant, but it's a starting point. Actually, I just realized your matrices are square, so it's definitely possible to drop some template parameters in the code below.
As I mentioned in my comment, for C++17 and up, it's very likely none of this is required at all.
First, let's define some boilerplate that let's us create and index sequence with one value left out (i.e. the row you want to skip):
#include <utility>
// Based on https://stackoverflow.com/a/32223343.
template <size_t Offset, class T1, class T2>
struct offset_sequence_merger;
template <size_t Offset, size_t... I1, size_t... I2>
struct offset_sequence_merger<Offset, std::index_sequence<I1...>, std::index_sequence<I2...>>
: std::index_sequence<I1..., (Offset + I2)...>
{ };
template <std::size_t Excluded, std::size_t End>
using make_excluded_index_sequence = offset_sequence_merger<Excluded + 1,
std::make_index_sequence<Excluded>,
std::make_index_sequence<End - Excluded - 1>>;
Now let's put this to use to extract sub-matrices:
#include <array>
template <class T, std::size_t N, std::size_t... Indices>
constexpr std::array<T, sizeof...(Indices)> extract_columns (
std::array<T, N> const & source, std::index_sequence<Indices...>) {
return { source.at(Indices)... };
}
template <class T, std::size_t N>
constexpr std::array<T, N - 1> drop_first_column (
std::array<T, N> const & source) {
return extract_columns(source, make_excluded_index_sequence<0, N>());
}
template <class T, std::size_t Rows, std::size_t Cols, std::size_t... RowIndices>
constexpr auto create_sub_matrix (
std::array<std::array<T, Cols>, Rows> const & source,
std::index_sequence<RowIndices...>)
-> std::array<std::array<T, Cols - 1>, sizeof...(RowIndices)> {
return { drop_first_column(source.at(RowIndices))... };
}
template <std::size_t ExcludedRow, class T, std::size_t Rows, std::size_t Cols>
constexpr auto create_sub_matrix (
std::array<std::array<T, Cols>, Rows> const & source)
-> std::array<std::array<T, Cols - 1>, Rows - 1> {
return create_sub_matrix(source,
make_excluded_index_sequence<ExcludedRow, Rows>());
}
And finally, here's some code showing that the above seems to do what it should. You can see it in action at Wandbox:
#include <iostream>
#include <string>
template <class T>
void print_seq (std::integer_sequence<T> const & /* seq */) {
std::cout << '\n';
}
template <class T, T Head, T... Tail>
void print_seq (std::integer_sequence<T, Head, Tail...> const & /* seq */) {
std::cout << Head << ' ';
print_seq(std::integer_sequence<T, Tail...>{});
}
template <class T, std::size_t N>
void print_array (std::array<T, N> const & src) {
std::string sep = "";
for (auto const & e : src) {
std::cout << sep << e;
sep = " ";
}
std::cout << '\n';
}
template <class T, std::size_t N, std::size_t M>
void print_matrix (std::array<std::array<T, N>, M> const & src) {
for (auto const & row : src) { print_array(row); }
}
int main () {
auto indexSeqA = make_excluded_index_sequence<0, 3>(); print_seq(indexSeqA);
auto indexSeqB = make_excluded_index_sequence<1, 3>(); print_seq(indexSeqB);
auto indexSeqC = make_excluded_index_sequence<2, 3>(); print_seq(indexSeqC);
std::cout << '\n';
std::array<int, 3> arr = { 1, 7, 9 };
print_array(arr); std::cout << '\n';
std::array<std::array<int, 3>, 3> matrix = {{
{ 0, 1, 2 }
, { 3, 4, 5 }
, { 6, 7, 8 }
}};
print_matrix(matrix); std::cout << '\n';
print_matrix(create_sub_matrix<0>(matrix)); std::cout << '\n';
print_matrix(create_sub_matrix<1>(matrix)); std::cout << '\n';
}
Hopefully that's enough to help you implement the determinant
function completely. (P.S.: No need to explicitly provide the size_t template argument to determinant when calling it, it will be automatically deduced from the size of it's std::array argument).