I am building an application in Python which can predict the values for Pm2.5 pollution from a dataframe. I am using the values for November and I am trying to first build the linear regression model. How can I make the linear regression without using the dates? I only need predictions for the Pm2.5, the dates are known. Here is what I tried so far:
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
data = pd.read_csv("https://raw.githubusercontent.com/iulianastroia/csv_data/master/final_dataframe.csv")
data['day'] = pd.to_datetime(data['day'], dayfirst=True)
#Splitting the dataset into training(70%) and test(30%)
X_train, X_test, y_train, y_test = train_test_split(data['day'], data['pm25'], test_size=0.3,
random_state=0
)
#Fitting Linear Regression to the dataset
lin_reg = LinearRegression()
lin_reg.fit(data['day'], data['pm25'])
This code throws the following error:
ValueError: Expected 2D array, got 1D array instead:
array=['2019-11-01T00:00:00.000000000' '2019-11-01T00:00:00.000000000'
'2019-11-01T00:00:00.000000000' ... '2019-11-30T00:00:00.000000000'
'2019-11-30T00:00:00.000000000' '2019-11-30T00:00:00.000000000'].
Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.