My data table looks like this.
With
data.columns
of following 60 columns
['WeatherHR0', 'WeatherHR1', 'WeatherHR2', 'WeatherHR3', 'WeatherHR4',
'WeatherHR5', 'WeatherHR6', 'WeatherHR7', 'WeatherHR8', 'WeatherHR9',
'WeatherHR10', 'WeatherHR11', 'WeatherHR12', 'WeatherHR13',
'WeatherHR14', 'WeatherHR15', 'WeatherHR16', 'WeatherHR17',
'WeatherHR18', 'WeatherHR19', 'WeatherHR20', 'WeatherHR21',
'WeatherHR22', 'WeatherHR23', 'AvgDB', 'HDD0', 'HDD5', 'HDD10', 'HDD13',
'HDD18', 'CDD15', 'CDD18', 'Peak Average', 'Day of Week', 'Holiday',
'HR1', 'HR2', 'HR3', 'HR4', 'HR5', 'HR6', 'HR7', 'HR8', 'HR9', 'HR10',
'HR11', 'HR12', 'HR13', 'HR14', 'HR15', 'HR16', 'HR17', 'HR18', 'HR19',
'HR20', 'HR21', 'HR22', 'HR23', 'HR24', 'Max']
At times, I wanted to select data from multiple columns that are separated by unwanted columns (unwanted as for that moment, might needed for later).
I wanted to do something like df.loc[['WeatherHR0':WeatherHR23'+ 'Peak Average'+ 'HR0':'HR24']].
For example, I may want to select columns from WeatherHR0~WeatherHR23 + Peak Average + HR0~24 while keep other columns undropped.
I know I can drop the unselected columns/create new dataframe, but is there a pythonic way to selected discreted columns in pandas?