Assume I have a DataFrame df
like:
source tables columns data_type length
src1 table1 col1 INT 4
src1 table1 col2 CHAR 2
src1 table2 col1 CHAR 2
src2 table1 col1 INT 4
src2 table1 col2 DATE 3
NOTE: the DataFrame also has another 4 columns which aren't relevant to the problem
Need an output that looks similar to:
{
"src1": {
"table1": {
"col1": {
"type": "INT"
"length": 4
},
"col2": {
"type": "CHAR"
"length": 2
}
},
"table2": {
"col1": {
"type": "CHAR"
"length": 2
}
}
},
"src2": {
"table1": {
"col1": {
"type": "INT"
"length": 4
},
"col2": {
"type": "DATE"
"length": 3
}
}
}
}
The code the I currently have produces the same output as above with the exclusion of the actual data type values (ie. instead of "type": "CHAR"
, I'm getting "type": ""
) as I'm not sure how I'd be able to nest the values accordingly. Here is the code:
def make_nested(df):
f = lambda: defaultdict(f)
data = f()
for row in df.to_numpy().tolist():
t = data
for r in row[:-6]:
t = t[r]
t[row[-6]] = {
"type": '',
"length": ''
}
return data
My question is how can I properly append the data_type
and length
column values into each columns
JSON object without sacrificing the exact format? Thanks.