the following code is not updating the graph as i change the slider. The slider consists of two variables Ao and Au which i wanted to change. Initially Ao is set to be 600 and Au is set to be 800. as the slider moves i expected the graph to change which is not working. what mistake am I doing? and if possible kindly tell me the way to make four sliders that works together as i change them which is Ao,Au, Bo and Bu.
import numpy as np
from matplotlib.widgets import Slider, Button, RadioButtons
import numpy as np
import matplotlib.pyplot as plt
Jo=6.5
Ju=6.5
I=2.5
deltaJ=Jo-Ju
Ao=600
Bo=0
Au=800
Bu=0
v5=1400e6
deltaJ=Jo-Ju
inten=[]
wave=[]
rrrinten=[]
Fomax=np.int64(Jo+I)
Fomin=np.int64(Jo-I)
Fumax=np.int64(Ju+I)
Fumin=np.int64(Ju-I)
if deltaJ == 0:
for i in range(Fomin,Fomax+1):
Fo=i
for k in range(Fumin,Fumax+1):
Fu=k
if np.absolute(Fo-Fu)<2:
# print(Fo, Fu)
deltaF=Fo- Fu
if deltaF ==0:
a=I
b=Fo
c=Jo
s=a+b+c
X=(a*(a+1))-(b*(b+1))-(c*(c+1))
p=4*(X*X)/(2*b)*(2*b+1)*(2*b+2)*(2*c)*(2*c+1)*(2*c+2)
t=(2*Fo+1)*(2*Fu+1)/(2*I+1)
inten.append(p*t)
Co=(Fo*(Fo+1)-I*(I+1)-Jo*(Jo+1))
alphao=Co/2
betao=(0.75)*Co*(Co+1)-I*(I+1)*Jo*(Jo+1)/(2*I*Jo)*(2*I-1)*(2*Jo-1)
Cu=(Fu*(Fu+1)-I*(I+1)-Ju*(Ju+1))
alphau=Cu/2
vc=0
betau=(0.75)*Cu*(Cu+1)-I*(I+1)*Ju*(Ju+1)/(2*I*Ju)*(2*I-1)*(2*Ju-1)
v=vc+alphao*Ao+betao*Bo-alphau*Au+betau*Bu
wave.append(v)
# print(Fo,Fu,inten)
elif deltaF ==1:
a=I
b=Fo
c=Jo
s=a+b+c
p=2*(s+1)*(s-2*a)*(s-2*b)*(s-2*c+1)/(2*b)*(2*b+1)*(2*b+2)*(2*c-1)*(2*c)*(2*c+1)
t=(2*Fo+1)*(2*Fu+1)/(2*I+1)
inten.append(p*t)
Co=(Fo*(Fo+1)-I*(I+1)-Jo*(Jo+1))
alphao=Co/2
betao=(0.75)*Co*(Co+1)-I*(I+1)*Jo*(Jo+1)/(2*I*Jo)*(2*I-1)*(2*Jo-1)
Cu=(Fu*(Fu+1)-I*(I+1)-Ju*(Ju+1))
alphau=Cu/2
vc=0
betau=(0.75)*Cu*(Cu+1)-I*(I+1)*Ju*(Ju+1)/(2*I*Ju)*(2*I-1)*(2*Ju-1)
v=vc+alphao*Ao+betao*Bo-alphau*Au+betau*Bu
wave.append(v)
# print(Fo,Fu,inten)
elif deltaF ==-1:
a=I
b=Fo
c=Jo
s=a+b+c
p=2*(s+1)*(s-2*a)*(s-2*b)*(s-2*c+1)/(2*b)*(2*b+1)*(2*b+2)*(2*c-1)*(2*c)*(2*c+1)
t=(2*Fo+1)*(2*Fu+1)/(2*I+1)
inten.append(p*t)
Co=(Fo*(Fo+1)-I*(I+1)-Jo*(Jo+1))
alphao=Co/2
betao=(0.75)*Co*(Co+1)-I*(I+1)*Jo*(Jo+1)/(2*I*Jo)*(2*I-1)*(2*Jo-1)
Cu=(Fu*(Fu+1)-I*(I+1)-Ju*(Ju+1))
alphau=Cu/2
vc=0
betau=(0.75)*Cu*(Cu+1)-I*(I+1)*Ju*(Ju+1)/(2*I*Ju)*(2*I-1)*(2*Ju-1)
v=vc+alphao*Ao+betao*Bo-alphau*Au+betau*Bu
wave.append(v)
# print(Fo,Fu,inten)
else:
print("Invalid delta F value")
print("value of delta J=",deltaJ)
elif deltaJ == 1:
for i in range(Fomin,Fomax+1):
Fo=i
for k in range(Fumin,Fumax+1):
Fu=k
if np.absolute(Fo-Fu)<2:
# print(Fo, Fu)
deltaF=Fo- Fu
if deltaF ==0:
a=I
b=Fo
c=Jo
s=a+b+c
p=2*(s+1)*(s-2*a)*(s-2*b)*(s-2*c+1)/(2*b)*(2*b+1)*(2*b+2)*(2*c-1)*(2*c)*(2*c+1)
t=(2*Fo+1)*(2*Fu+1)/(2*I+1)
inten.append(p*t)
vc=0
Co=(Fo*(Fo+1)-I*(I+1)-Jo*(Jo+1))
alphao=Co/2
betao=(0.75)*Co*(Co+1)-I*(I+1)*Jo*(Jo+1)/(2*I*Jo)*(2*I-1)*(2*Jo-1)
Cu=(Fu*(Fu+1)-I*(I+1)-Ju*(Ju+1))
alphau=Cu/2
betau=(0.75)*Cu*(Cu+1)-I*(I+1)*Ju*(Ju+1)/(2*I*Ju)*(2*I-1)*(2*Ju-1)
v=vc+alphao*Ao+betao*Bo-alphau*Au+betau*Bu
wave.append(v)
# print(Fo,Fu,inten)
elif deltaF ==1:
c=Jo
b=Fo
a=I
s=a+b+c
p=s*(s+1)*(s-2*a-1)*(s-2*a)/(2*b-1)*(2*b)*(2*b+1)*(2*c-1)*(2*c)*(2*c+1)
t=(2*Fo+1)*(2*Fu+1)/(2*I+1)
inten.append(p*t)
Co=(Fo*(Fo+1)-I*(I+1)-Jo*(Jo+1))
alphao=Co/2
betao=(0.75)*Co*(Co+1)-I*(I+1)*Jo*(Jo+1)/(2*I*Jo)*(2*I-1)*(2*Jo-1)
Cu=(Fu*(Fu+1)-I*(I+1)-Ju*(Ju+1))
alphau=Cu/2
vc=0
betau=(0.75)*Cu*(Cu+1)-I*(I+1)*Ju*(Ju+1)/(2*I*Ju)*(2*I-1)*(2*Ju-1)
v=vc+alphao*Ao+betao*Bo-alphau*Au+betau*Bu
wave.append(v)
# print(Fo,Fu,inten)
elif deltaF ==-1:
c=Jo
b=Fo
a=I
s=a+b+c
p=(s-2*b)*(s-2*b-1)*(s-2*c+1)*(s-2*c+2)/(2*b+1)*(2*b+2)*(2*b+3)*(2*c-1)*(2*c)*(2*c+1)
t=(2*Fo+1)*(2*Fu+1)/(2*I+1)
inten.append(p*t)
vc=0
Co=(Fo*(Fo+1)-I*(I+1)-Jo*(Jo+1))
alphao=Co/2
betao=(0.75)*Co*(Co+1)-I*(I+1)*Jo*(Jo+1)/(2*I*Jo)*(2*I-1)*(2*Jo-1)
Cu=(Fu*(Fu+1)-I*(I+1)-Ju*(Ju+1))
alphau=Cu/2
vc=0
betau=(0.75)*Cu*(Cu+1)-I*(I+1)*Ju*(Ju+1)/(2*I*Ju)*(2*I-1)*(2*Ju-1)
v=vc+alphao*Ao+betao*Bo-alphau*Au+betau*Bu
wave.append(v)
# print(Fo,Fu,inten)
else:
print("Invalid delta F value")
print("value of delta J=",deltaJ)
elif deltaJ == -1:
for i in range(Fomin,Fomax+1):
Fo=i
for k in range(Fumin,Fumax+1):
Fu=k
if np.absolute(Fo-Fu)<2:
# print(Fo, Fu)
deltaF=Fo- Fu
if deltaF ==0:
a=I
b=Fo
c=Jo+1
s=a+b+c
p=2*(s+1)*(s-2*a)*(s-2*b)*(s-2*c+1)/(2*b)*(2*b+1)*(2*b+2)*(2*c-1)*(2*c)*(2*c+1)
t=((2*Fo+1)*(2*Fu+1))/(2*I+1)
inten.append(p*t)
Co=(Fo*(Fo+1)-I*(I+1)-Jo*(Jo+1))
alphao=Co/2
betao=(0.75)*Co*(Co+1)-I*(I+1)*Jo*(Jo+1)/(2*I*Jo)*(2*I-1)*(2*Jo-1)
Cu=(Fu*(Fu+1)-I*(I+1)-Ju*(Ju+1))
alphau=Cu/2
vc=0
betau=(0.75)*Cu*(Cu+1)-I*(I+1)*Ju*(Ju+1)/(2*I*Ju)*(2*I-1)*(2*Ju-1)
v=vc+alphao*Ao+betao*Bo-alphau*Au+betau*Bu
wave.append(v)
# print(Fo,Fu,inten)
elif deltaF ==1:
c=Jo+1
b=Fo-1
a=I
s=a+b+c
p=(s-2*b)*(s-2*b-1)*(s-2*c+1)*(s-2*c+2)/(2*b+1)*(2*b+2)*(2*b+3)*(2*c-1)*(2*c)*(2*c+1)
t=((2*Fo+1)*(2*Fu+1))/(2*I+1)
inten.append(p*t)
Co=(Fo*(Fo+1)-I*(I+1)-Jo*(Jo+1))
alphao=Co/2
betao=(0.75)*Co*(Co+1)-I*(I+1)*Jo*(Jo+1)/(2*I*Jo)*(2*I-1)*(2*Jo-1)
Cu=(Fu*(Fu+1)-I*(I+1)-Ju*(Ju+1))
alphau=Cu/2
vc=0
betau=(0.75)*Cu*(Cu+1)-I*(I+1)*Ju*(Ju+1)/(2*I*Ju)*(2*I-1)*(2*Ju-1)
v=vc+alphao*Ao+betao*Bo-alphau*Au+betau*Bu
wave.append(v)
# print(Fo,Fu,inten)
elif deltaF ==-1:
c=Jo+1
b=Fo+1
a=I
s=a+b+c
p=s*(s+1)*(s-2*a-1)*(s-2*a)/(2*b-1)*(2*b)*(2*b+1)*(2*c-1)*(2*c)*(2*c+1)
t=((2*Fo+1)*(2*Fu+1))/(2*I+1)
inten.append(p*t)
Co=(Fo*(Fo+1)-I*(I+1)-Jo*(Jo+1))
alphao=Co/2
betao=(0.75)*Co*(Co+1)-I*(I+1)*Jo*(Jo+1)/(2*I*Jo)*(2*I-1)*(2*Jo-1)
Cu=(Fu*(Fu+1)-I*(I+1)-Ju*(Ju+1))
alphau=Cu/2
vc=0
betau=(0.75)*Cu*(Cu+1)-I*(I+1)*Ju*(Ju+1)/(2*I*Ju)*(2*I-1)*(2*Ju-1)
v=vc+alphao*Ao+betao*Bo-alphau*Au+betau*Bu
wave.append(v)
# print(Fo,Fu,inten)
else:
print("Invalid delta F value")
print("value of delta J=",deltaJ)
else:
print("Invalid delta J value")
s1=np.size(wave)
print("no of waves=",s1)
if s1==15:
for i in range(0,15):
maxinten=max(inten)
rrrinten.append(100*inten[i]/maxinten)
elif s1==16:
for i in range(0,16):
maxinten=max(inten)
rrrinten.append(100*inten[i]/maxinten)
else:
print("Invalid Value")
# v5 = 1400e6 #Doppler width MHz
wave1=np.array(wave)
rrrinten1=np.array(rrrinten)
xvalues = np.arange(wave1.min()-100,wave1.max()+100)
z = np.exp(((-3e12)*np.log(2)*((xvalues-wave1.reshape((-1,1)))/(v5))**2))*((5*np.log(2)/(np.pi))**0.5)
s = z*rrrinten1.reshape((-1,1))
# plt.plot(xrange,s.sum(axis=0),'--r')
ax = plt.subplot(111)
plt.subplots_adjust(bottom=0.25)
axcolor = 'lightgoldenrodyellow'
#plt.figure()
plt.stem(wave,rrrinten)
plt.plot(xvalues,s.sum(axis=0),'--r')
axcolor = 'lightgoldenrodyellow'
axfreq = plt.axes([0.2, 0.1, 0.65, 0.03], facecolor=axcolor)
axamp = plt.axes([0.2, 0.15, 0.65, 0.03], facecolor=axcolor)
sfreq = Slider(axfreq, 'Au',0,1000,valinit=Ao)
samp = Slider(axamp, 'Ao' ,0,1000,valinit=Au)
sfreq.on_changed(Ao)
samp.on_changed(Au)
#plt.draw()
plt.show()