Hey there, I have a mathematical function (multidimensional which means that there's an index which I pass to the C++-function on which single mathematical function I want to return. E.g. let's say I have a mathematical function like that:
f = Vector(x^2*y^2 / y^2 / x^2*z^2)
I would implement it like that:
double myFunc(int function_index)
{
switch(function_index)
{
case 1:
return PNT[0]*PNT[0]*PNT[1]*PNT[1];
case 2:
return PNT[1]*PNT[1];
case 3:
return PNT[2]*PNT[2]*PNT[1]*PNT[1];
}
}
whereas PNT
is defined globally like that: double PNT[ NUM_COORDINATES ]
. Now I want to implement the derivatives of each function for each coordinate thus generating the derivative matrix (columns = coordinates; rows = single functions). I wrote my kernel already which works so far and which call's myFunc().
The Problem is: For calculating the derivative of the mathematical sub-function i concerning coordinate j, I would use in sequential mode (on CPUs e.g.) the following code (whereas this is simplified because usually you would decrease h until you reach a certain precision of your derivative):
f0 = myFunc(i);
PNT[ j ] += h;
derivative = (myFunc(j)-f0)/h;
PNT[ j ] -= h;
now as I want to do this on the GPU in parallel, the problem is coming up: What to do with PNT? As I have to increase certain coordinates by h, calculate the value and than decrease it again, there's a problem coming up: How to do it without 'disturbing' the other threads? I can't modify PNT
because other threads need the 'original' point to modify their own coordinate.
The second idea I had was to save one modified point for each thread but I discarded this idea quite fast because when using some thousand threads in parallel, this is a quite bad and probably slow (perhaps not realizable at all because of memory limits) idea.
'FINAL' SOLUTION
So how I do it currently is the following, which adds the value 'add' on runtime (without storing it somewhere) via preprocessor macro to the coordinate identified by coord_index
.
#define X(n) ((coordinate_index == n) ? (PNT[n]+add) : PNT[n])
__device__ double myFunc(int function_index, int coordinate_index, double add)
{
//*// Example: f[i] = x[i]^3
return (X(function_index)*X(function_index)*X(function_index));
// */
}
That works quite nicely and fast. When using a derivative matrix with 10000 functions and 10000 coordinates, it just takes like 0.5seks. PNT
is defined either globally or as constant memory like __constant__ double PNT[ NUM_COORDINATES ];
, depending on the preprocessor variable USE_CONST
.
The line return (X(function_index)*X(function_index)*X(function_index));
is just an example where every sub-function looks the same scheme, mathematically spoken:
f = Vector(x0^3 / x1^3 / ... / xN^3)
NOW THE BIG PROBLEM ARISES:
myFunc
is a mathematical function which the user should be able to implement as he likes to. E.g. he could also implement the following mathematical function:
f = Vector(x0^2*x1^2*...*xN^2 / x0^2*x1^2*...*xN^2 / ... / x0^2*x1^2*...*xN^2)
thus every function looking the same. You as a programmer should only code once and not depending on the implemented mathematical function. So when the above function is being implemented in C++, it looks like the following:
__device__ double myFunc(int function_index, int coordinate_index, double add)
{
double ret = 1.0;
for(int i = 0; i < NUM_COORDINATES; i++)
ret *= X(i)*X(i);
return ret;
}
And now the memory accesses are very 'weird' and bad for performance issues because each thread needs access to each element of PNT
twice. Surely, in such a case where each function looks the same, I could rewrite the complete algorithm which surrounds the calls to myFunc
, but as I stated already: I don't want to code depending on the user-implemented function myFunc
...
Could anybody come up with an idea how to solve this problem?? Thanks!