This is less of an answer to the original OP and more of an answer to people who are using sklearn API and encounter this issue.
For those of you who are using sklearn API, especially using one of the cross_val
methods from sklearn, there are two solutions you could consider using.
Sklearn API solution
A solution that worked for me was to cast categorical fields into the category
datatype in pandas.
If you are using pandas df, LightGBM should automatically treat those as categorical. From the documentation:
integer codes will be extracted from pandas categoricals in the
Python-package
It would make sense for this to be the equivalent in the sklearn API to setting categoricals in the Dataset object.
But keep in mind that LightGBM does not officially support virtually any of the non-core parameters for sklearn API, and they say so explicitly:
**kwargs is not supported in sklearn, it may cause unexpected issues.
Adaptive Solution
The other, more sure-fire solution to being able to use methods like cross_val_predict
and such is to just create your own wrapper class that implements the core Dataset/Train under the hood but exposes a fit/predict interface for the cv methods to latch onto. That way you get the full functionality of lightGBM with only a little bit of rolling your own code.
The below sketches out what this could look like.
class LGBMSKLWrapper:
def __init__(self, categorical_variables, params):
self.categorical_variables = categorical_variables
self.params = params
self.model = None
def fit(self, X, y):
my_dataset = ltb.Dataset(X, y, categorical_feature=self.categorical_variables)
self.model = ltb.train(params=self.params, train_set=my_dataset)
def predict(self, X):
return self.model.predict(X)
The above lets you load up your parameters when you create the object, and then passes that onto train when the client calls fit
.