I am programming a target shooter game for a school project. In the game, you click and a bullet flies from the player sprite to your cursor. I currently have programmed target drawing, player sprite drawing and a bullet function however I would like to limit how many times, say, per second the player can shoot. This is partly to avoid spam shooting ruining the game's performance and also making it more challenging than just rapidly left clickign everywhere. I would assume that I could use a 'pygame_clock' command but I'm not quite sure how. Below is the code:
import pygame
#Setting window dimensions and caption. (Module 1)
pygame.init()
window = pygame.display.set_mode((800, 575))
pygame.display.set_caption("TARGET PRACTICE")
#Colour variables. (Module 1)
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
RED = (200, 0, 0)
GREEN = (0, 200, 0)
BLUE = (0, 0, 200)
#py_clock tracks framerate of program for other 'pygame.time' commands. (Module 8)
py_clock = pygame.time.Clock()
#Target class created. (Module 5)
class Target:
def __init__(self, x, y, h, w, v):
self.x = x
self.y = y
self.h = h
self.w = w
self.v = v
#Instantiation of targets. (Module 5)
target_1 = Target(0, 80, 60, 40, 0.5)
target_2 = Target(0, 100, 60, 40, 0.5)
target_3 = Target(0, 50, 60, 40, 0.5)
target_4 = Target(0, 75, 60, 40, 0.5)
target_5 = Target(0, 45, 60, 40, 0.5)
target_6 = Target(0, 85, 60, 40, 0.5)
#Declaring variables to be used in the while loop. (Module 5)
clock = 0
target_2_threshold = 500
target_3_threshold = 1000
target_4_threshold = 1500
target_5_threshold = 2000
target_6_threshold = 2500
#Setting player sprite dimension variables. (Module 6)
player_sprite_x = 357.5
player_sprite_y = 450
player_sprite_h = 125
player_sprite_w = 85
#all_bullets list to store bullets made by function inside loop. (Module7)
all_bullets = []
exec = True
while exec:
for event in pygame.event.get():
if event.type == pygame.QUIT:
exec = False
#'IF' statement to trigger the shooting function. (Module 7)
if event.type == pygame.MOUSEBUTTONDOWN:
if event.button == 1:
dx = event.pos[0] - (player_sprite_x+ player_sprite_w//2)
dy = event.pos[1] - player_sprite_y
direction = pygame.math.Vector2(dx, dy).normalize()
bullet = {'x': player_sprite_x+42, 'y': player_sprite_y, 'direction': direction}
all_bullets.append(bullet)
#Defines movement of targets and sets delay between drawings. (Module 5)
clock += 1
target_1.x += target_1.v
if clock > target_2_threshold:
target_2.x += target_2.v
if clock > target_3_threshold:
target_3.x += target_3.v
if clock > target_4_threshold:
target_4.x += target_4.v
if clock > target_5_threshold:
target_5.x += target_5.v
if clock > target_6_threshold:
target_6.x += target_6.v
#all_bullets_keep list combined with FOR loop retains only bullets in the arena. (Module 7)
all_bullets_keep = []
for item in all_bullets:
item['x'] += item['direction'][0] # item['direction'][0] * 2
item['y'] += item['direction'][1] # item['direction'][1] * 2
if 0 < item['x'] < 800 and 0 < item['y'] < 575:
all_bullets_keep.append(item)
all_bullets = all_bullets_keep
#Fill the background (Module 5)
window.fill(RED)
#Redraw each target in every frame. (Module 5)
pygame.draw.rect(window, BLUE, (target_1.x, target_1.y, target_1.h, target_1.w))
if clock > target_2_threshold:
pygame.draw.rect(window, BLUE, (target_2.x, target_2.y, target_2.h, target_2.w))
if clock > target_3_threshold:
pygame.draw.rect(window, BLUE, (target_3.x, target_3.y, target_3.h, target_3.w))
if clock > target_4_threshold:
pygame.draw.rect(window, BLUE, (target_4.x, target_4.y, target_4.h, target_4.w))
if clock > target_5_threshold:
pygame.draw.rect(window, BLUE, (target_5.x, target_5.y, target_5.h, target_5.w))
if clock > target_6_threshold:
pygame.draw.rect(window, BLUE, (target_6.x, target_6.y, target_6.h, target_6.w))
#Draw the player sprite. (Module 6)
pygame.draw.rect(window, BLUE, (player_sprite_x, player_sprite_y, player_sprite_w, player_sprite_h))
#Draw each item in all_bullets. (Module 7)
for item in all_bullets:
pygame.draw.rect(window, BLUE, (item['x']-5, item['y']-5, 10, 10))
pygame.display.update()
#tick_busy_loop limits number of times the game can refresh per second. (Module 8)
py_clock.tick_busy_loop(120)
pygame.quit()