In time complexity, constant coefficients do not play a role. This is because the actual time it takes an algorithm to run depends also on the physical constraints of the machine. This means that if you run your code on a machine which is twice as fast as another, all other conditions being equal, it would run in about half the time with the same input.
But that’s not the same thing when you compare two algorithms with different time complexities. For example, when you compare the running time of an algorithm of O( N ^ 2 ) to an algorithm of O(N), the running time of O( N ^ 2 ) grows so fast with the growth of input size that the O(N) one cannot catch up with it, no matter how big you choose its constant coefficient.
Let’s say your constant coefficient is 1000, instead of just 2, then for input sizes of ( N > 1000 ) the running time of O( N ^ 2 ) algorithm becomes a proportion of ( N * N ) while N would be growing proportional to the input size, while the running time of the O(N) algorithm only remains proportional to ( 1000 * N ).