a type to help overload resolution. (tag dispatching if I am not wrong)
When you want to use a complex template specialization pattern on some function, you don't try to go at it directly, but rather write:
template <typename T1, typename T2, other things maybe>
int foo(T1 param1, T2 param2 and so on)
{
using tag = put your complex stuff here, which produces an empty struct
detail::foo_impl(tag, std::forward<T1>(param1), std::forward<T2>(param2) and so on);
}
Now, the compiler doesn't have to decide between competing choices of template specialization, since with different tags you get incompatible functions.
a base interface
struct vehicle {
// common members and methods,
// including (pure) virtual ones, e.g.
virtual std::size_t num_maximum_occupants() = 0;
virtual ~vehicle() = default;
};
namespace mixins {
struct named { std::string name; };
struct wheeled { int num_wheels; public: rev() { }; };
} // namespace mixins
struct private_sedan : public vehicle, public wheeled, named {
// I dunno, put some car stuff here
//
// and also an override of `num_maximum_occupants()`
};
Making the base struct completely empty is perhaps not that common, but it's certainly possible if you use mixins a lot. And you could check for inheritance from vehicle
(although I'm not sure I'd do that).
a template parameter
Not sure what this means, but venturing a guess:
template <typename T>
struct foo { };
template <typename T, typename N>
struct foo<std::array<T, N>> {
int value = 1;
};
If you now use foo<T>::value
in a function, it will work only if T
is int
with few (?) exceptions.