Use a bit changed justify
function:
c = ['Col1','Col2']
#if missing values are empty strings
df[c] = justify(df[c].to_numpy(), invalid_val='', side='up', axis=0)
#if missing values are NaNs
#df[c] = justify(df[c].to_numpy(), invalid_val=np.nan, side='up', axis=0)
print (df)
Col1 Col2
0 Apple France
1 Bana Mexico
2 Grape Argentina
3 Sat India
4 Russia
5 US
6
#https://stackoverflow.com/a/44559180/2901002
def justify(a, invalid_val=0, axis=1, side='left'):
"""
Justifies a 2D array
Parameters
----------
A : ndarray
Input array to be justified
axis : int
Axis along which justification is to be made
side : str
Direction of justification. It could be 'left', 'right', 'up', 'down'
It should be 'left' or 'right' for axis=1 and 'up' or 'down' for axis=0.
"""
if invalid_val is np.nan:
mask = pd.notna(a)
else:
mask = a!=invalid_val
justified_mask = np.sort(mask,axis=axis)
if (side=='up') | (side=='left'):
justified_mask = np.flip(justified_mask,axis=axis)
out = np.full(a.shape, invalid_val, dtype=object)
if axis==1:
out[justified_mask] = a[mask]
else:
out.T[justified_mask.T] = a.T[mask.T]
return out