This is in some ways the reverse of an answer I gave to another question. We can recursively build this up by slicing out the first row and prepending it to the result of rotating the result of a recursive call on the remaining numbers:
const reverse = a =>
[...a] .reverse ();
const transpose = m =>
m [0] .map ((c, i) => m .map (r => r [i]))
const rotate = m =>
transpose (reverse (m))
const makeSpiral = (xs, rows) =>
xs .length < 2
? [[... xs]]
: [
xs .slice (0, xs .length / rows),
... rotate(makeSpiral (xs .slice (xs .length / rows), xs.length / rows))
]
const range = (lo, hi) =>
[...Array (hi - lo + 1)] .map ((_, i) => lo + i)
const generateMatrix = (n) =>
makeSpiral (range (1, n * n), n)
console .log (generateMatrix (4))
A sharp eye will note that rotate
is different here from the older question. transpose (reverse (m))
returns a clockwise rotated version of the input matrix. reverse (transpose (m))
returns a counter-clockwise rotated one. Similarly, here we rotate the result of the recursive call before including it; whereas in the other question we recurse on the rotated version of the matrix. Since we're reversing that process, it should be reasonably clear why.
The main function is makeSpiral
, which takes an array and the number of rows to spiral it into and returns the spiraled matrix. (If rows
is not a factor of the length of the array, the behavior might be crazy.) generateMatrix
is just a thin wrapper around that to handle your square case by generating the initial array (using range
) and passing it to makeSpiral
.
Note how makeSpiral
works with rectangles other than squares:
makeSpiral ([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], 2) //=>
// [
// [ 1, 2, 3, 4, 5, 6],
// [12, 11, 10, 9, 8, 7]
// ]
makeSpiral ([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], 3) //=>
// [
// [ 1, 2, 3, 4],
// [10, 11, 12, 5],
// [ 9, 8, 7, 6]
// ]
makeSpiral ([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], 4) //=>
// [
// [ 1, 2, 3],
// [10, 11, 4],
// [ 9, 12, 5],
// [ 8, 7, 6]
// ]
makeSpiral ([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], 6) //=>
// [
// [ 1, 2],
// [12, 3],
// [11, 4],
// [10, 5],
// [ 9, 6],
// [ 8, 7]
// ]
The other functions -- range
, reverse
, transpose
, and rotate
-- are general purpose utility functions for working with arrays or matrices.