Say I am trying to build a dataframe to print out like a table for checking sectors:
SectorDescription SectorCode
0 State Energy Data Systems SEDS
1 Coal Data COAL
2 Petroleum Data PET
3 Natural Gas Data NG
4 Electricity Data ELEC
5 Petroleum Imports Data PET_IMPORTS
6 Short-Term Energy Outlook Data STEO
7 International Energy Data INTL
8 Annual Energy Outlook Data AEO
Right now I have:
QuandlEIASector = {"State Energy Data Systems":"SEDS",
"Coal Data":"COAL",
"Petroleum Data":"PET",
"Natural Gas Data":"NG",
"Electricity Data":"ELEC",
"Petroleum Imports Data":"PET_IMPORTS",
"Short-Term Energy Outlook Data":"STEO",
"International Energy Data":"INTL",
"Annual Energy Outlook Data":"AEO"}
What I did is to:
QuandlEIASectorList = pd.DataFrame()
QuandlEIASectorList['SectorDescription'] = QuandlEIASector.keys()
QuandlEIASectorList['SectorCode'] = QuandlEIASector.values()
QuandlEIASectorList
But is there anyway quicker with python's comprehension one-liner to assign column values to a pandas dataframe?