Given these dataframes (in the actual data, there can be millions of rows in each):
df1 =
Start End
0 10 20
1 25 35
df2 =
Start End
0 12 18
1 2 8
2 22 28
Where df1
can be considered the master ranges and df2
are sample ranges, where I need to store the offsets for each range in df2
as a set of columns. With help from sammywemmy I was able to get an output with the offsets:
# Import required modules
import numpy as np
import pandas as pd
# Define dataframes
df1 = pd.DataFrame([[10, 20], [25, 35]], columns=['Start', 'End'])
df2 = pd.DataFrame([[12, 18], [2, 8], [22, 28]], columns=['Start', 'End'])
# Create 2d numpy arrays
np_start1 = df1['Start'].to_numpy()
np_end1 = df1['End'].to_numpy()
np_start2 = df2['Start'].to_numpy()
np_end2 = df2['End'].to_numpy()
# Use numpy tiles to create shapes that allow elementwise math
tile_start1 = np.tile(np_start1, (len(df2), 1)).T
tile_end1 = np.tile(np_end1, (len(df2), 1)).T
tile_start2 = np.tile(np_start2, (len(df1), 1))
tile_end2 = np.tile(np_end2, (len(df1), 1))
# Do some math
np_start1_end2_diff = np.subtract(tile_start1, tile_end2)
np_start2_end1_diff = np.subtract(tile_start2, tile_end1)
np_start2_start1_diff = np.subtract(tile_start2, tile_start1)
np_end2_end1_diff = np.subtract(tile_end2, tile_end1)
# Create columns
col_start1_end2_diff = [f'S1-E2_{i}' for i in range(len(df2))]
col_start2_end1_diff = [f'S2-E1_{i}' for i in range(len(df2))]
col_start2_start1_diff = [f'S2-S1_{i}' for i in range(len(df2))]
col_end2_end1_diff = [f'E2-E1_{i}' for i in range(len(df2))]
# Create dataframes of calculated numpy arrays
df_start1_end2_diff = pd.DataFrame(np_start1_end2_diff, columns=col_start1_end2_diff)
df_start2_end1_diff = pd.DataFrame(np_start2_end1_diff, columns=col_start2_end1_diff)
df_start2_start1_diff = pd.DataFrame(np_start2_start1_diff, columns=col_start2_start1_diff)
df_end2_end1_diff = pd.DataFrame(np_end2_end1_diff, columns=col_end2_end1_diff)
# Lump calculated numpy arrays into output dataframe
df_output = pd.concat([
df_start1_end2_diff,
df_start2_end1_diff,
df_start2_start1_diff,
df_end2_end1_diff
], axis=1)
# Sort the columns by the digits at the end
filtered = df_output.columns[df_output.columns.str.contains('\d')]
cols = sorted(filtered, key=lambda x: x[-1])
df_output = df_output.reindex(cols, axis='columns')
print(df_output)
Output:
S1-E2_0 S2-E1_0 S2-S1_0 E2-E1_0 S1-E2_1 S2-E1_1 S2-S1_1 E2-E1_1 S1-E2_2 S2-E1_2 S2-S1_2 E2-E1_2
0 -8 -8 2 -2 2 -18 -8 -12 -18 2 12 8
1 7 -23 -13 -17 17 -33 -23 -27 -3 -13 -3 -7
- S1 = df1.Start
- E1 = df1.End
- S2 = df2.Start
- E2 = df2.End
The part I'm struggling with is that I also need to add an additional column for each row in df2
based on the output of the following function:
def get_position(start1, end1, start2, end2):
if start1 >= start2 and end1 <= end2:
return 'A'
elif start1 > end2:
return 'B'
elif start1 == end2:
return 'C'
elif start1 < end2 and end1 > end2:
return 'D'
elif start1 < start2 and end1 > start2:
return 'E'
elif end1 == start2:
return 'F'
elif end1 < start2:
return 'G'
The target output should be this:
S1-E2_0 S2-E1_0 S2-S1_0 E2-E1_0 Pos_0 S1-E2_1 S2-E1_1 S2-S1_1 E2-E1_1 Pos_1 S1-E2_2 S2-E1_2 S2-S1_2 E2-E1_2 Pos_2
0 -8 -8 2 -2 A 2 -18 -8 -12 B -18 2 12 8 G
1 7 -23 -13 -17 B 17 -33 -23 -27 B -3 -13 -3 -7 A
How do I append a Pos_{i}
column for each row in df2
that is an output of function get_position()
?
Is a function with a bunch of if/else conditions even a good idea when we're dealing with millions of rows? I've read that we can vectorize functions to improve performance, but I was not able to figure out how to do that for get_position()
in my scenario.