The approach in C and C++ can be quite different, because in C++ you can have operator overloading work for you, and wrap the integer you want to protect in some kind of class (for which you would overload the necessary operators. In C, you would have to wrap the integer you want to protect in a structure (to carry the remainder as well as the result) and call some function to do the heavy lifting.
Other than that, the approach in the two languages is the same: depending on the operation you want to perform (adding, in your example) you have to figure out the worst that could happen and handle it.
In the case of adding, it's quite simple: if the sum of the two is going to be greater than some maximum value (which will be the case if the difference of that maximum value M
and one of the operands is greater than the other operand) you can calculate the remainder - the part that's too big: if ((M - O1) > O2) R = O2 - (M - O1)
(e.g. if M
is 100, O1
is 80 and O2
is 30, 30 - (100 - 80) = 10
, which is the remainder).
The case of subtraction is equally simple: if your first operand is smaller than the second, the remainder is the second minus the first (if (O1 < O2) { Rem = O2 - O1; Result = 0; } else { Rem = 0; Result = O1 - O2; }
).
It's multiplication that's a bit more difficult: your safest bet is to do a binary multiplication of the values and check that your resulting value doesn't exceed the number of bits you have. Binary multiplication is a long multiplication, just like you would do if you were doing a decimal multiplication by hand on paper, so, for example, 12 * 5 is:
0110
0100
====
0110
0
0110
0
++++++
011110 = 40
if you'd have a four-bit integer, you'd have an overflow of one bit here (i.e. bit 4 is 1, bit 5 is 0. so only bit 4 counts as an overflow).
For division you only really need to care about division by 0, most of the time - the rest will be handled be your CPU.
HTH
rlc