I'm setting up a grid search using the catboost package in R. Following the catboost documentation (https://catboost.ai/docs/), the grid search for hyperparameter tuning can be conducted using the 3 separate commands in R,
fit_control <- trainControl(method = "cv", number = 4, classProbs = TRUE)
grid <- expand.grid(depth = c(7,8,9,10), learning_rate = c(0.1,0.2,0.3,0.4), iterations = c(10,100,1000))
report <- train(df.scale, as.factor(make.names(as.matrix(tier1))), method = catboost.caret, logging_level = 'Verbose', preProc = NULL, tuneGrid = grid, trControl = fit_control)
searching across different values for depth, learning rate, and the number of iterations. These commands seem well enough, it's just I can't figure out where to input the option for the task_type = "GPU". Would appreciate any help on how to specify using the GPU for finding the optimal parameters using R.