To stay with your example, suppose I write a game library that has a
struct game {
int width;
int height;
int area;
game(int w, int h) : width(w),height(h),area(w*h) {}
};
Now you use my library and because I did not write any documentation (evil me) you just start writing code and try what you can do with that class. You write code
#include <iostream>
int main() {
game g{3,5};
g.width = 12;
std::cout << g.width << " * " << g.height << " == " << g.area;
}
and get output:
12 * 5 == 15
You will complain that the code I wrote is broken because you get non-sense results when you use it. If however I had used const
for things you are not supposed to modify:
struct game {
const int width;
const int height;
const int area;
game(int w, int h) : width(w),height(h),area(w*h) {}
};
Then you would get a nice error message that tells you that you tried to modify something that you are not supposed to modify:
prog.cc: In function 'int main()':
prog.cc:11:15: error: assignment of read-only member 'game::width'
g.width = 12;
Once you fixed your code to
#include <iostream>
int main() {
game g{3,5};
std::cout << g.width << " * " << g.height << " == " << g.area;
}
All const
could be removed and the output would not change. However this is not always the case. For example member functions can have const
and non-const
overloads that can do different things depending on whether the method is called on a const
or on a non-const
object:
#include <iostream>
struct foo {
void sayHello() const {
std::cout << "I am a const object\n";
}
void sayHello() {
std::cout << "I am a non-const object\n";
}
};
int main() {
const foo f;
f.sayHello();
foo g;
g.sayHello();
}
output:
I am a const object
I am a non-const object
Conclusion:
const
is mainly to ensure correctnes and to avoid mistakes. const
can also be used to make const
objects behave differently than non const
objects. There is more to it and details you can read up eg here.