I have run this with 1x1 and 2x2 matrices which has worked, but for larger ones I have not gotten the correct answer. I have a sample 5x5 matrix in the code which should have a determinant of -30024.
I am running this code but it will not give me the correct answer:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define rMax 5
double a[rMax][rMax] = {{-1,2,3,-6,7}, {-2,0,-1,4,2}, {1,-9,8,2,0}, {9,3,5,7,9}, {-5,3,2,-2,2}};
//determinant should be -30024
double matrix_determinant(size_t rowMax, const double z[][rMax])
{
double final = 0;
double w[rowMax][rowMax];
for(size_t row = 0; row < rowMax; row++) //copies z into a new editable matrix
{
for(size_t column = 0; column < rowMax; column++)
w[row][column] = z[row][column];
}
if(rowMax > 2) //checks for larger matrix
{
for(size_t mat = 0; mat < rowMax; mat++) //loops equal to the max width of the matrix
{
double new[rowMax - 1][rowMax - 1]; //new matrix is 1x1 smaller
for(size_t cRow = 0; cRow < (rowMax - 1); cRow++) //initializing the new matrix
{
for(size_t cCol = 0; cCol < (rowMax - 1); cCol++)
{
new[cRow][cCol] = w[cRow + 1][((cCol + mat) % (rowMax - 1)) + 1];
}
}
if(0 == (mat % 2)) //alternates adding and subtracting
final += (w[0][mat] * matrix_determinant((rowMax - 1), new));
else
final += ((-1) * w[0][mat] * matrix_determinant((rowMax - 1), new));
}
return final;
}
if(rowMax == 1) //checks for 1x1 matrix
{
return w[0][0];
}
else //computes final 2x2 matrix (base case)
{
final = (w[0][0] * w[1][1]) - (w[0][1] * w[1][0]);
return final;
}
}
int main ( void )
{
size_t s = rMax;
double det = matrix_determinant(s, a);
printf("The determinant of matrix a is: %lf\n", det);
}