I'm looking at popularity of food stalls in a pop-up market:
Unnamed: 0 Shop1 Shop2 Shop3 ... shop27 shop28 shop29 shop30 shop31 shop32 shop33 shop34
0 0 484 516 484 ... 348 146 1445 1489 623 453 779 694
1 1 276 564 941 ... 1463 178 700 996 1151 364 111 1243
2 2 74 1093 961 ... 1260 1301 1151 663 1180 723 1477 1198
3 3 502 833 22 ... 349 1105 835 1 938 921 745 14
4 4 829 983 952 ... 568 1435 518 807 874 197 81 573
.. ... ... ... ... ... ... ... ... ... ... ... ... ...
114 114 1 187 706 ... 587 1239 1413 850 1324 788 687 687
115 115 398 733 298 ... 864 981 100 80 1322 381 430 349
116 116 11 312 904 ... 34 508 850 1278 432 395 601 213
117 117 824 261 593 ... 1026 147 488 69 25 286 1229 1028
118 118 461 966 183 ... 850 817 1411 863 950 987 415 130
I then summarize the overall visits and split into bins (pd.cut(df.sum(axis=0),5,labels=['lowest','lower','medium','higher','highest'])
):
Unnamed: 0 lowest
Shop1 medium
Shop2 medium
Shop3 lower
Shop4 lower
... ...
shop31 higher
shop32 medium
shop33 higher
shop34 higher
I then want to see popularity of each category over time, manual example:
6891-33086 33087-59151 59152-85216 85217-111281 111282-137346
0 0 1373 3546 13999 1238
How can I do this with python?