I am trying to do best subset selection on the wine dataset, and then I want to get the test error rate using 10 fold CV. The code I used is -
cost1 <- function(good, pi=0) mean(abs(good-pi) > 0.5)
res.best.logistic <-
bestglm(Xy = winedata,
family = binomial, # binomial family for logistic
IC = "AIC", # Information criteria
method = "exhaustive")
res.best.logistic$BestModels
best.cv.err<- cv.glm(winedata,res.best.logistic$BestModel,cost1, K=10)
However, this gives the error -
Error in UseMethod("family") : no applicable method for 'family' applied to an object of class "NULL"
I thought that $BestModel is the lm-object that represents the best fit, and that's what manual also says. If that's the case, then why cant I find the test error on it using 10 fold CV, with the help of cv.glm?
The dataset used is the white wine dataset from https://archive.ics.uci.edu/ml/datasets/Wine+Quality and the package used is the boot
package for cv.glm
, and the bestglm
package.
The data was processed as -
winedata <- read.delim("winequality-white.csv", sep = ';')
winedata$quality[winedata$quality< 7] <- "0" #recode
winedata$quality[winedata$quality>=7] <- "1" #recode
winedata$quality <- factor(winedata$quality)# Convert the column to a factor
names(winedata)[names(winedata) == "quality"] <- "good" #rename 'quality' to 'good'