I am trying to understand the time complexity of some efficient methods of detecting cycles in a graph.
Two approaches for doing this are explained here. I would assume that time complexity is provided in terms of worst-case.
The first is union-find, which is said to have a time complexity of O(Vlog E).
The second uses a DFS based approach and is said to have a time complexity of O(V+E). If I am correct this is a more efficient complexity asymptotically than O(Vlog E). It is also convenient that the DFS-based approach can be used for directed and undirected graphs.
My issue is that I fail to see how the second approach can be considered to run in O(V+E) time because DFS runs in O(V+E) time and the algorithm checks the nodes adjacent to any discovered nodes for the starting node. Surely this would mean that the algorithm runs in O(V2) time because up to V-1 adjacent nodes might have to be traversed over for each discovered node? It is obviously impossible for more than one node to require the traversal of n-1 adjacent nodes but from my understanding this would still be the upper bound of the runtime.
Hopefully someone understands why I think this and can help me to understand why the complexity is O(V+E).