I've been using tensorflow for cpu on my laptop and due to it been so slow I decided to move to my desktop pc and use tensorflow for gpu.
The problem is that in my desktop computer I can't import like this, which I'm able to do on my laptop:
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.layers import Dropout, Flatten, Dense
from tensorflow.keras.applications import MobileNetV2
So I decided to use the keras module with tensorflow-gpu as backend, so my imports on desktop look like this:
from keras.preprocessing.image import ImageDataGenerator
from keras.layers import Dropout, Flatten, Dense
from keras.applications import MobileNetV2
Also, my conda list on laptop looks like this:
keras 2.3.1 pypi_0 pypi
keras-applications 1.0.8 py_0
keras-preprocessing 1.1.0 py_1
tensorboard 2.1.0 py3_0
tensorflow 2.1.0 eigen_py36hdbbabfe_0
tensorflow-base 2.1.0 eigen_py36h49b2757_0
tensorflow-estimator 2.1.0 pyhd54b08b_0
And my conda list on desktop looks like this:
keras 2.3.1 pypi_0 pypi
keras-applications 1.0.8 py_0
keras-preprocessing 1.1.0 py_1
tensorboard 2.1.0 py3_0
tensorflow 2.1.0 gpu_py36h3346743_0
tensorflow-base 2.1.0 gpu_py36h55f5790_0
tensorflow-estimator 2.1.0 pyhd54b08b_0
tensorflow-gpu 2.1.0 h0d30ee6_0
So, what's the difference between using the imports like tensorflow.keras.applications and using directly keras.applications and which one is better or worse? I looked everywhere and I couldn't find a solution for the imports on my desktop, which I'd like to fix because I like using imports like tensorflow.keras.