I am dealing with subroutine that is very inefficient when the array size becomes large, for example, NN=1000, KK=200, MM = 200. But, I can not come up with ideas to optimize it.
program main
implicit none
integer :: NN, KK, MM
integer, allocatable, dimension(:,:) :: id
complex*16, allocatable, dimension(:) :: phase
complex*16 :: phase_base(3)
real*8, allocatable, dimension(:,:) :: wave_base
complex*16, allocatable, dimension(:,:) :: wave
integer :: i, j, k, n
NN = 1000
KK = 200
MM = 200
allocate(id(MM,3))
allocate(phase(KK))
allocate(wave_base(KK, NN*(NN+1)/2 ))
allocate(wave(NN, NN))
id(:,:) = 2
phase_base(:) = (1.0d0,1.0d0)
wave_base(:,:) = 1.0d0
phase(:) = (1.0d0,1.0d0)
call noise_wave(NN, KK, MM, id, phase, phase_base, wave_base, wave)
deallocate(id)
deallocate(phase)
deallocate(wave_base)
deallocate(wave)
end program main
subroutine noise_wave(NN, KK, MM, id, phase_1, phase_base, wave_base, wave)
implicit none
integer, intent(in) :: NN, KK, MM
integer, intent(in), dimension(MM, 3) :: id
complex*16, intent(in) :: phase_1(KK)
complex*16, intent(in) :: phase_base(3)
real*8, intent(in) :: wave_base(KK, NN*(NN+1)/2 )
complex*16, intent(out) :: wave(NN, NN)
integer :: i, j, k, p, n
integer :: x, y, z
real :: start, finish
complex*16 :: phase_2, phase_2_conjg
do p = 1, MM
x = id(p, 1)
y = id(p, 2)
z = id(p, 3)
phase_2 = (phase_base(1) ** x) * (phase_base(2) ** y) * (phase_base(3) ** z)
phase_2_conjg = conjg(phase_2)
n = 0
do j = 1, NN
do i = 1, j ! upper triangle
n = n + 1
do k = 1, KK
wave(i,j) = wave(i,j) + wave_base(k,n) * phase_1(k) * phase_2_conjg
enddo
wave(j,i) = conjg(wave(i,j) )
enddo
enddo
enddo
end subroutin
Could someone give me some hint? (I have fulfill the suggested optimizations. Also, following Ian's suggestion, I have added a small test. Thus you can test it directly.)