Say I have a dataframe df
, and a directory ./
which has the following excel files inside:
path = './'
for root, dirs, files in os.walk(path):
for file in files:
if file.endswith(('.xls', '.xlsx')):
print(os.path.join(root, file))
# dfs.append(read_dfs(os.path.join(root, file)))
# df = reduce(lambda left, right: pd.concat([left, right], axis = 0), dfs)
Out:
df1.xlsx,
df2.xlsx,
df3.xls
...
I want to merge df
with all files from path
based on common columns date
and city
. It works with the following code, but it's not concise enough.
So I raise a question for improving the code, thank you.
df = pd.merge(df, df1, on = ['date', 'city'], how='left')
df = pd.merge(df, df2, on = ['date', 'city'], how='left')
df = pd.merge(df, df3, on = ['date', 'city'], how='left')
...
Reference: