The answer to your original question is that println!
borrows its arguments. However, as you pointed out in the comments, even (apparently) moving the integer into the closure still causes a compile error.
For the purposes of this answer, we'll work with this code.
fn use_closure<F: FnOnce() + 'static>(_: F) {}
fn main() {
let x: i32 = 0;
use_closure(|| {
let _y = x;
});
}
(playground)
use_closure
simulates what thread::spawn
does in the original code: it consumes a closure whose type has to be 'static
.
Attempting to compile this gives the error
error[E0373]: closure may outlive the current function, but it borrows `x`, which is owned by the current function
--> src/main.rs:5:17
|
5 | use_closure(|| {
| ^^ may outlive borrowed value `x`
6 | let _y = x;
| - `x` is borrowed here
|
note: function requires argument type to outlive `'static`
--> src/main.rs:5:5
|
5 | / use_closure(|| {
6 | | let _y = x;
7 | | });
| |______^
help: to force the closure to take ownership of `x` (and any other referenced variables), use the `move` keyword
|
5 | use_closure(move || {
| ^^^^^^^
Wait, what?
6 | let _y = x;
| - `x` is borrowed here
Why is x
borrowed there? Shouldn't it be a copy? The answer lies in "capture modes" for closures. From the documentation
The compiler prefers to capture a closed-over variable by immutable borrow, followed by unique immutable borrow (see below), by mutable borrow, and finally by move. It will pick the first choice of these that allows the closure to compile. The choice is made only with regards to the contents of the closure expression; the compiler does not take into account surrounding code, such as the lifetimes of involved variables.
Precisely because x
has a Copy
type, the closure itself can compile with a mere immutable borrow. Given an immutable borrow of x
(call it bor
), we can do our assignment to _y
with _y = *bor
. This isn't a "move out of data behind a reference" because this is a copy instead of a move.
However, since the closure borrows a local variable, its type won't be 'static
, so it won't be usable in use_closure
or thread::spawn
.
Trying the same code with a type that isn't Copy
, it actually works perfectly, since the closure is forced to capture x
by moving it.
fn use_closure<F: FnOnce() + 'static>(_: F) {}
fn main() {
let x: Vec<i32> = vec![];
use_closure(|| {
let _y = x;
});
}
(playground)
Of course, as you already know, the solution is to use the move
keyword in front of the closure. This forces all captured variables to be moved into the closure. Since the variable won't be borrowed, the closure will have a static type and will be able to be used in use_closure
or thread::spawn
.
fn use_closure<F: FnOnce() + 'static>(_: F) {}
fn main() {
let x: i32 = 0;
use_closure(move || {
let _y = x;
});
}
(playground)