I have used load_boston dataset from sklearn and Linear Regression. The code:
from sklearn.datasets import load_boston
import pandas as pd
import numpy as np
%matplotlib inline
from sklearn.model_selection import train_test_split, KFold,cross_val_score,cross_validate
from sklearn.linear_model import LinearRegression
#Loading the dataset
x = load_boston()
df = pd.DataFrame(x.data, columns = x.feature_names)
df["MEDV"] = x.target
X = df.drop("MEDV",1) #Feature Matrix
y = df["MEDV"] #Target Variable
df.head()
linear = LinearRegression()
X_train,X_test, y_train,y_test = train_test_split(X,y, random_state = 11)
linear.fit(X_train,y_train)
kfold = KFold(n_splits=5, random_state=11, shuffle=True)
scores = cross_val_score(estimator= linear,cv=kfold, X=X, y = y, )# if scoring= "accuracy": error
#>ValueError: continuous is not supported
print(f"Mean Accuracy: {scores.mean():.2%} and standard deviation: {scores.std():.2%}")
If I use scoring= "accuracy"
in the cross_val_score, it rises a error:
ValueError: continuous is not supported
What is happening?