I have a dataset of temperature values taken at specific datetimes across five locations. For whatever reason, sometimes the readings are every hour, and some every four hours. Another issue is that when the time changed as a result of daylight savings, the readings are off by one hour. I am interested in the readings taken every four hours and would like to subset these by day and night to ultimately get daily and nightly mean temperatures.
To summarise, the readings I am interested in are either:
0800, 1200, 1600 =day
2000, 0000, 0400 =night
Recordings between 0800-1600 and 2000-0400 each day should be averaged.
During daylight savings, the equivalent times are:
0900, 1300, 1700 =day
2100, 0100, 0500 =night
Recordings between 0900-1700 and 2100-0500 each day should be averaged.
In the process, I am hoping to subset by site.
There are also some NA
values or blank cells which should be ignored.
So far, I tried to subset by one hour of interest just to see if it worked, but haven't got any further than that. Any tips on how to subset by a series of times of interest? Thanks!
temperature <- read.csv("SeaTemperatureData.csv",
stringsAsFactors = FALSE)
temperature <- subset(temperature, select=-c(X)) #remove last column that contains comments, not needed
temperature$Date.Time < -as.POSIXct(temperature$Date.Time,
format="%d/%m/%Y %H:%M",
tz="Pacific/Auckland")
#subset data by time, we only want to include temperatures recorded at certain times
temperature.goat <- subset(temperature, Date.Time==c('01:00:00'), select=c("Goat.Island"))
Date.Time Goat.Island Tawharanui Kawau Tiritiri Noises
1 2019-06-10 16:00:00 16.820 16.892 16.749 16.677 15.819
2 2019-06-10 20:00:00 16.773 16.844 16.582 16.654 15.796
3 2019-06-11 00:00:00 16.749 16.820 16.749 16.606 15.819
4 2019-06-11 04:00:00 16.487 16.796 16.654 16.558 15.796
5 2019-06-11 08:00:00 16.582 16.749 16.487 16.463 15.867
6 2019-06-11 12:00:00 16.630 16.773 16.725 16.654 15.867