primitive recursion
Here's one possible way to make a grid using recursion -
const makeGrid = (f, rows = 0, cols = 0) =>
rows <= 0
? []
: [ ...makeGrid(f, rows - 1, cols), makeRow(f, rows, cols) ]
const makeRow = (f, row = 0, cols = 0) =>
cols <= 0
? []
: [ ...makeRow(f, row, cols - 1), f(row, cols) ]
const g =
makeGrid((x, y) => ({ xPos: x, yPos: y }), 2, 3)
console.log(JSON.stringify(g))
// [ [ {"xPos":1,"yPos":1}
// , {"xPos":1,"yPos":2}
// , {"xPos":1,"yPos":3}
// ]
// , [ {"xPos":2,"yPos":1}
// , {"xPos":2,"yPos":2}
// , {"xPos":2,"yPos":3}
// ]
// ]
The functional param f
allows us to construct grid cells in a variety of ways
const g =
makeGrid((x, y) => [ x - 1, y - 1 ], 3, 2)
console.log(JSON.stringify(g))
// [ [ [ 0, 0 ]
// , [ 0, 1 ]
// ]
// , [ [ 1, 0 ]
// , [ 1, 1 ]
// ]
// , [ [ 2, 0 ]
// , [ 2, 1 ]
// ]
// ]
work smarter, not harder
Per Bergi's comment, you can reduce some extra argument passing by using a curried cell constructor -
const makeGrid = (f, rows = 0, cols = 0) =>
rows <= 0
? []
: [ ...makeGrid(f, rows - 1, cols), makeRow(f(rows), cols) ]
const makeRow = (f, cols = 0) =>
cols <= 0
? []
: [ ...makeRow(f, cols - 1), f(cols) ]
const g =
makeGrid
( x => y => [ x, y ] // "curried" constructor
, 2
, 3
)
console.log(JSON.stringify(g))
// [ [ [ 1, 1 ]
// , [ 1, 2 ]
// , [ 1, 3 ]
// ]
// , [ [ 2, 1 ]
// , [ 2, 2 ]
// , [ 2, 3 ]
// ]
// ]
have your cake and eat it too
Alternatively, we can incorporate the suggestion and still accept a binary function at the call site using partial application -
const makeGrid = (f, rows = 0, cols = 0) =>
rows <= 0
? []
: [ ...makeGrid(f, rows - 1, cols)
, makeRow(_ => f(rows, _), cols) // <-- partially apply f
]
const makeRow = (f, cols = 0) =>
cols <= 0
? []
: [ ...makeRow(f, cols - 1), f(cols) ]
const g =
makeGrid
( (x,y) => [ x, y ] // ordinary constructor
, 2
, 3
)
console.log(JSON.stringify(g))
// [ [ [ 1, 1 ]
// , [ 1, 2 ]
// , [ 1, 3 ]
// ]
// , [ [ 2, 1 ]
// , [ 2, 2 ]
// , [ 2, 3 ]
// ]
// ]
Nth dimension
Above we are limited to 2-dimensional grids. What if we wanted 3-dimensions or even more?
const identity = x =>
x
const range = (start = 0, end = 0) =>
start >= end
? []
: [ start, ...range(start + 1, end) ] // <-- recursion
const map = ([ x, ...more ], f = identity) =>
x === undefined
? []
: [ f(x), ...map(more, f) ] // <-- recursion
const makeGrid = (r = [], d = 0, ...more) =>
d === 0
? r
: map(range(0, d), x => makeGrid(r(x), ...more)) // <-- recursion
const g =
makeGrid
( x => y => z => [ x, y, z ] // <-- constructor
, 2 // <-- dimension 1
, 2 // <-- dimension 2
, 3 // <-- dimension 3
, // ... <-- dimension N
)
console.log(JSON.stringify(g))
Output
[ [ [ [0,0,0]
, [0,0,1]
, [0,0,2]
]
, [ [0,1,0]
, [0,1,1]
, [0,1,2]
]
]
, [ [ [1,0,0]
, [1,0,1]
, [1,0,2]
]
, [ [1,1,0]
, [1,1,1]
, [1,1,2]
]
]
]
any dimensions; flat result
Per you comment, you want a flat array of pairs. You can achieve that by simply substituting map
for flatMap
, as demonstrated below -
const identity = x =>
x
const range = (start = 0, end = 0) =>
start >= end
? []
: [ start, ...range(start + 1, end) ]
const flatMap = ([ x, ...more ], f = identity) =>
x === undefined
? []
: [ ...f(x), ...flatMap(more, f) ] // <-- flat!
const makeGrid = (r = [], d = 0, ...more) =>
d === 0
? r
: flatMap(range(0, d), x => makeGrid(r(x), ...more))
const g =
makeGrid
( x => y => [{ x, y }] // <-- constructor
, 2 // <-- dimension 1
, 2 // <-- dimension 2
, // ... <-- dimension N
)
console.log(JSON.stringify(g))
// [ { x: 0, y: 0 }
// , { x: 0, y: 1 }
// , { x: 1, y: 0 }
// , { x: 1, y: 1 }
// ]
The functional constructor demonstrates its versatility again -
const g =
makeGrid
( x => y =>
[[ 3 + x * 2, 3 + y * 2 ]] // whatever you want
, 3
, 3
)
console.log(JSON.stringify(g))
// [[3,3],[3,5],[3,7],[5,3],[5,5],[5,7],[7,3],[7,5],[7,7]]
learn more
As other have show, this particular version of makeGrid
using flatMap
is effectively computing a cartesian product. By the time you've wrapped your head around flatMap
, you already know the List Monad!
more cake, please!
If you're hungry for more, I want to give you a primer on one of my favourite topics in computational study: delimited continuations. Getting started with first class continuations involves developing an intuition on some ways in which they are used -
reset
( call
( (x, y) => [[ x, y ]]
, amb([ 'J', 'Q', 'K', 'A' ])
, amb([ '♡', '♢', '♤', '♧' ])
)
)
// [ [ J, ♡ ], [ J, ♢ ], [ J, ♤ ], [ J, ♧ ]
// , [ Q, ♡ ], [ Q, ♢ ], [ Q, ♤ ], [ Q, ♧ ]
// , [ K, ♡ ], [ K, ♢ ], [ K, ♤ ], [ K, ♧ ]
// , [ A, ♡ ], [ A, ♢ ], [ A, ♤ ], [ A, ♧ ]
// ]
Just like the List Monad, above amb
encapsulates this notion of ambiguous (non-deterministic) computations. We can easily write our 2-dimensional simpleGrid
using delimited continuations -
const simpleGrid = (f, dim1 = 0, dim2 = 0) =>
reset
( call
( f
, amb(range(0, dim1))
, amb(range(0, dim2))
)
)
simpleGrid((x, y) => [[x, y]], 3, 3)
// [[0,0],[0,1],[0,2],[1,0],[1,1],[1,2],[2,0],[2,1],[2,2]]
Creating an N-dimension grid is a breeze thanks to amb
as well. The implementation has all but disappeared -
const always = x =>
_ => x
const multiGrid = (f = always([]), ...dims) =>
reset
( apply
( f
, dims.map(_ => amb(range(0, _)))
)
)
multiGrid
( (x, y, z) => [[ x, y, z ]] // <-- not curried this time, btw
, 3
, 3
, 3
)
// [ [0,0,0], [0,0,1], [0,0,2]
// , [0,1,0], [0,1,1], [0,1,2]
// , [0,2,0], [0,2,1], [0,2,2]
// , [1,0,0], [1,0,1], [1,0,2]
// , [1,1,0], [1,1,1], [1,1,2]
// , [1,2,0], [1,2,1], [1,2,2]
// , [2,0,0], [2,0,1], [2,0,2]
// , [2,1,0], [2,1,1], [2,1,2]
// , [2,2,0], [2,2,1], [2,2,2]
// ]
Or we can create the desired increments and offsets using line
in the cell constructor -
const line = (m = 1, b = 0) =>
x => m * x + b // <-- linear equation, y = mx + b
multiGrid
( (...all) => [ all.map(line(2, 3)) ] // <-- slope: 2, y-offset: 3
, 3
, 3
, 3
)
// [ [3,3,3], [3,3,5], [3,3,7]
// , [3,5,3], [3,5,5], [3,5,7]
// , [3,7,3], [3,7,5], [3,7,7]
// , [5,3,3], [5,3,5], [5,3,7]
// , [5,5,3], [5,5,5], [5,5,7]
// , [5,7,3], [5,7,5], [5,7,7]
// , [7,3,3], [7,3,5], [7,3,7]
// , [7,5,3], [7,5,5], [7,5,7]
// , [7,7,3], [7,7,5], [7,7,7]
// ]
So where do reset
, call
, apply
, and amb
come from? JavaScript does not support first class continuations, but nothing stops us from implementing them on our own -
const call = (f, ...values) =>
({ type: call, f, values }) //<-- ordinary object
const apply = (f, values) =>
({ type: call, f, values }) //<-- ordinary object
const shift = (f = identity) =>
({ type: shift, f }) //<-- ordinary object
const amb = (xs = []) =>
shift(k => xs.flatMap(x => k(x))) //<-- returns ordinary object
const reset = (expr = {}) =>
loop(() => expr) //<-- ???
const loop = f =>
// ... //<-- follow the link!
Given the context of your question, it should be obvious that this is a purely academic exercise. Scott's answer offers sound rationale on some of the trade-offs we make. Hopefully this section shows you that higher-powered computational features can easily tackle problems that initially appear complex.
First class continuations unlock powerful control flow for your programs. Have you ever wondered how JavaScript implements function*
and yield
? What if JavaScript didn't have these powers baked in? Read the post to see how we can make these (and more) using nothing but ordinary functions.
continuations code demo
See it work in your own browser! Expand the snippet below to generate grids using delimited continuations... in JavaScript! -
// identity : 'a -> 'a
const identity = x =>
x
// always : 'a -> 'b -> 'a
const always = x =>
_ => x
// log : (string, 'a) -> unit
const log = (label, x) =>
console.log(label, JSON.stringify(x))
// line : (int, int) -> int -> int
const line = (m, b) =>
x => m * x + b
// range : (int, int) -> int array
const range = (start = 0, end = 0) =>
start >= end
? []
: [ start, ...range(start + 1, end) ]
// call : (* -> 'a expr, *) -> 'a expr
const call = (f, ...values) =>
({ type: call, f, values })
// apply : (* -> 'a expr, * array) -> 'a expr
const apply = (f, values) =>
({ type: call, f, values })
// shift : ('a expr -> 'b expr) -> 'b expr
const shift = (f = identity) =>
({ type: shift, f })
// reset : 'a expr -> 'a
const reset = (expr = {}) =>
loop(() => expr)
// amb : ('a array) -> ('a array) expr
const amb = (xs = []) =>
shift(k => xs .flatMap (x => k (x)))
// loop : (unit -> 'a expr) -> 'a
const loop = f =>
{ // aux1 : ('a expr, 'a -> 'b) -> 'b
const aux1 = (expr = {}, k = identity) =>
{ switch (expr.type)
{ case call:
return call(aux, expr.f, expr.values, k)
case shift:
return call
( aux1
, expr.f(x => trampoline(aux1(x, k)))
, identity
)
default:
return call(k, expr)
}
}
// aux : (* -> 'a, (* expr) array, 'a -> 'b) -> 'b
const aux = (f, exprs = [], k) =>
{ switch (exprs.length)
{ case 0:
return call(aux1, f(), k) // nullary continuation
case 1:
return call
( aux1
, exprs[0]
, x => call(aux1, f(x), k) // unary
)
case 2:
return call
( aux1
, exprs[0]
, x =>
call
( aux1
, exprs[1]
, y => call(aux1, f(x, y), k) // binary
)
)
case 3: // ternary ...
case 4: // quaternary ...
default: // variadic
return call
( exprs.reduce
( (mr, e) =>
k => call(mr, r => call(aux1, e, x => call(k, [ ...r, x ])))
, k => call(k, [])
)
, values => call(aux1, f(...values), k)
)
}
}
return trampoline(aux1(f()))
}
// trampoline : * -> *
const trampoline = r =>
{ while (r && r.type === call)
r = r.f(...r.values)
return r
}
// simpleGrid : ((...int -> 'a), int, int) -> 'a array
const simpleGrid = (f, dim1 = 0, dim2 = 0) =>
reset
( call
( f
, amb(range(0, dim1))
, amb(range(0, dim2))
)
)
// multiGrid : (...int -> 'a, ...int) -> 'a array
const multiGrid = (f = always([]), ...dims) =>
reset
( apply
( f
, dims.map(_ => amb(range(0, _)))
)
)
// : unit
log
( "simple grid:"
, simpleGrid((x, y) => [[x, y]], 3, 3)
)
// : unit
log
( "multiGrid:"
, multiGrid
( (...all) => [ all.map(line(2, 3)) ]
, 3
, 3
, 3
)
)