3

I Have two spark DFs which I need to join. Only select Values from df2 which are present in df1 there shouldn't be repeated rows.

For example:

df1:

+-------------+---------------+----------+
|a            |b              |val       |
+-------------+---------------+----------+
| 202003101750|   202003101700|1712384842|
| 202003101740|   202003101700|1590554927|
| 202003101730|   202003101700|1930860788|
| 202003101730|   202003101600|    101713|
| 202003101720|   202003101700|1261542412|
| 202003101720|   202003101600|   1824155|
| 202003101710|   202003101700| 912601761|
+-------------+---------------+----------+

df2:

+-------------+---------------+
|a            |b              |
+-------------+---------------+
| 202003101800|   202003101700|
| 202003101800|   202003101700|
| 202003101750|   202003101700|
| 202003101750|   202003101700|
| 202003101750|   202003101700|
| 202003101750|   202003101700|
| 202003101740|   202003101700|
| 202003101740|   202003101700|
+-------------+---------------+

I am doing the following:

df1.join(df2, Seq("a", "b"), "leftouter").where(col("val").isNotNull) But my output has several repeated rows.

+-------------+---------------+----------+
|a            |b              |val       |
+-------------+---------------+----------+
| 202003101750|   202003101700|1712384842|
| 202003101750|   202003101700|1712384842|
| 202003101750|   202003101700|1712384842|
| 202003101750|   202003101700|1712384842|
| 202003101740|   202003101700|1590554927|
| 202003101740|   202003101700|1590554927|
| 202003101740|   202003101700|1590554927|
| 202003101740|   202003101700|1590554927||
+-------------+---------------+----------+

I am trying to achieve an except like operation if val is dropped from df1. But except doesn't seem to work. For example the following is the desired operation df1.drop(col("val")).except("df2") The schema is as follows for df1:

root
 |-- a: String (nullable = true)
 |-- b: String (nullable = true)
 |-- val: long (nullable = true)

Also, What exactly is the difference between left-outer join and except? Expected output:

+-------------+---------------+----------+
|a            |b              |val       |
+-------------+---------------+----------+
| 202003101750|   202003101700|1712384842|
| 202003101740|   202003101700|1590554927||
+-------------+---------------+----------+
coderWorld
  • 602
  • 1
  • 8
  • 28

2 Answers2

2

You can use the function dropDuplicates(), that remove all duplicated rows:

uniqueDF = df.dropDuplicates()

Or your can specify the columns you wanna match:

uniqueDF = df.dropDuplicates("a","b")
Piyush Patel
  • 1,646
  • 1
  • 14
  • 26
2

LeftOuter join will get all the rows from left table and matching rows from right table.

Except will give rows that are not exist in second dataframe compared to first dataframe(without duplicates).

For your case you can use inner (or) outer join with dropDuplicates.

df1.join(df2, Seq("a", "b"), "inner").dropDuplicates().show()
//+------------+------------+----------+
//|           a|           b|       val|
//+------------+------------+----------+
//|202003101740|202003101700|1590554927|
//|202003101750|202003101700|1712384842|
//+------------+------------+----------+

df1.join(df2, Seq("a", "b"), "rightouter").where(col("val").isNotNull).dropDuplicates().show()
//+------------+------------+----------+
//|           a|           b|       val|
//+------------+------------+----------+
//|202003101740|202003101700|1590554927|
//|202003101750|202003101700|1712384842|
//+------------+------------+----------+
notNull
  • 30,258
  • 4
  • 35
  • 50
  • Is dropDuplicates and distinct the same operation? @Shu – coderWorld Apr 28 '20 at 04:02
  • @coderWorld, One difference exists `distinct` will apply to the **whole dataframe** but `dropDuplicates` we can drop duplicates on `specific column` (or) on whole `dataframe` too! – notNull Apr 28 '20 at 04:05