Background
I want to determine the global cumulative value of a variable for different decades starting from 1990 to 2014 i.e. 1990, 2000, 2010 (3 decades separately). I have annual data for different countries. However, data availability is not uniform.
Existing questions
Uses R: 1
Following questions look at date formatting issues: 2, 3
Answers to these questions do not address the current question.
Current question
How to obtain a global sum for the period of different decades using features/tools of Pandas?
Expected outcome
1990-2000 x1
2000-2010 x2
2010-2015 x3
Method used so far
data_binned = data_pivoted.copy()
decade = []
# obtaining decade values for each country
for i in range(1960, 2017):
if i in list(data_binned):
# adding the columns into the decade list
decade.append(i)
if i % 10 == 0:
# adding large header so that newly created columns are set at the end of the dataframe
data_binned[i *10] = data_binned.apply(lambda x: sum(x[j] for j in decade), axis=1)
decade = []
for x in list(data_binned):
if x < 3000:
# removing non-decade columns
del data_binned[x]
# renaming the decade columns
new_names = [int(x/10) for x in list(data_binned)]
data_binned.columns = new_names
# computing global values
global_values = data_binned.sum(axis=0)
This is a non-optimal method because of less experience in using Pandas. Kindly suggest a better method which uses features of Pandas. Thank you.