I've been looking for a function or package that would allow me to calculate the skew and kurtosis of a distribution in a weighted way, as I have histogram data.
For instance I have the data
import numpy as np
np.array([[1, 2],
[2, 5],
[3, 6],
[4,12],
[5, 1])
where the first column [1,2,3,4,5]
are the values and the second column [2,5,6,12,1]
are the frequencies of the values.
I have found out how to do the first two moments (mean, standard deviation) in a weighted way using the weighted_avg_and_std
function specified in this thread, but I was not quite sure how I could extend this to both the skew and kurtosis, or even the nth statistical moment.
I have found the definitions themselves here and could manually write functions to implement this from scratch, but before I go and do that I was wondering if there were any existing packages or functions that might be able to do this.
Thanks
EDIT: I figured it out, the following code works (please note that this is for population moments)
skewnewss = np.average(((values-average)/np.sqrt(variance))**3, weights=weights)
and
kurtosis=np.average(((values-average)/np.sqrt(variance))**4-3, weights=weights)