I cannot find exactly what I am looking for, so here it is my question. I fetch from MongoDb some data into a Spark Dataframe. The dataframe has the following schema (df.printSchema
):
|-- flight: struct (nullable = true)
| |-- legs: array (nullable = true)
| | |-- element: struct (containsNull = true)
| | | |-- arrival: timestamp (nullable = true)
| | | |-- departure: timestamp (nullable = true)
| |-- segments: array (nullable = true)
| | |-- element: struct (containsNull = true)
| | | |-- arrival: timestamp (nullable = true)
| | | |-- departure: timestamp (nullable = true)
Do note the top-level structure, followed by an array, inside which I need to change my data. For example:
{
"flight": {
"legs": [{
"departure": ISODate("2020-10-30T13:35:00.000Z"),
"arrival": ISODate("2020-10-30T14:47:00.000Z")
}
],
"segments": [{
"departure": ISODate("2020-10-30T13:35:00.000Z"),
"arrival": ISODate("2020-10-30T14:47:00.000Z")
}
]
}
}
I want to export this in Json, but for some business reason, I want the arrival dates to have a different format than the departure dates. For example, I may want to export the departure ISODate in ms from epoch, but not the arrival one.
To do so, I thought of applying a custom function to do the transformation:
// Here I can do any tranformation. I hope to replace the timestamp with the needed value
val doSomething: UserDefinedFunction = udf( (value: Seq[Timestamp]) => {
value.map(x => "doSomething" + x.getTime) }
)
val newDf = df.withColumn("flight.legs.departure",
doSomething(df.col("flight.legs.departure")))
But this simply returns a brand new column, containing an array of a single doSomething
string.
{
"flight": {
"legs": [{
"arrival": "2020-10-30T14:47:00Z",
"departure": "2020-10-30T13:35:00Z"
}
],
"segments": [{
"arrival": "2020-10-30T14:47:00Z",
"departure": "2020-10-30T13:35:00Z",
}
]
},
"flight.legs.departure": ["doSomething1596268800000"]
}
And newDf.show(1)
+--------------------+---------------------+
| flight|flight.legs.departure|
+--------------------+---------------------+
|[[[182], 94, [202...| [doSomething15962...|
+--------------------+---------------------+
Instead of
{
...
"arrival": "2020-10-30T14:47:00Z",
//leg departure date that I changed
"departure": "doSomething1596268800000"
... // segments not affected in this example
"arrival": "2020-10-30T14:47:00Z",
"departure": "2020-10-30T13:35:00Z",
...
}
Any ideas how to proceed?
Edit - clarification:
Please bear in mind that my schema is way more complex than what shown above. For example, there is yet another top level data
tag, so flight
is below along with other information. Then inside flight
, legs
and segments
there are multiple more elements, some that are also nested. I only focused on the ones that I needed to change.
I am saying this, because I would like the simplest solution that would scale. I.e. ideally one that would simply change the required elements without having to de-construct and that re-construct the whole nested structure. If we cannot avoid that, is using case classes the simplest solution?