I am new to Python and classification algorithms. I am using GaussianNB for the multiclass classification of NSL KDD dataset, and in the end, I need to obtain the values of precision, recall, f1 score.
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
from sklearn.metrics import confusion_matrix, zero_one_loss
from sklearn.metrics import classification_report
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
y_pred = gnb.fit(train_x, train_Y).predict(test_x)
results_nm = confusion_matrix(test_Y,y_pred)
#print(results_nm)
print(classification_report(test_Y,y_pred))
print(accuracy_score(test_Y,y_pred))
print("Precision Score : ",precision_score(test_Y,y_pred,
pos_label='positive',
average='micro'))
print("Recall Score : ",recall_score(test_Y,y_pred,
pos_label='positive',
average='micro'))
print(f1_score(test_Y,y_pred,average='micro'))
I followed the instructions in a similar question at sklearn metrics for multiclass classification.
The output as follows, but I am getting the same output for all three. What could be the reason for that?