(Reproducible examples and feeble attempts at the end)
I've got two dataframes, df1 and df2:
df1:
Col_A Col_B Col_D
1 NaN 21 NaN
2 10 NaN 33
4 12 23 38
df2:
Col_C Col_E
2 22 44
3 NaN 45
5 4 48
And I'd like to find a common form like this:
df_common:
Col_A Col_B Col_C Col_D Col_E
1 NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN
3 NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN
5 NaN NaN NaN NaN NaN
...where I've got the union
of all column names and row indexes, and NaN
values only:
Then I'd like to fill in the values of df1 and df2 (still in two separate tables) so that I'll end up with:
df1_desired
Col_A Col_B Col_C Col_D Col_E
1 NaN 21 NaN NaN NaN
2 10 NaN NaN 33 NaN
3 NaN NaN NaN NaN NaN
4 12 23 NaN NaN NaN
5 NaN NaN NaN 38 NaN
df2_resired:
Col_A Col_B Col_C Col_D Col_E
1 NaN NaN NaN NaN NaN
2 NaN NaN 22 NaN 44
3 NaN NaN NaN NaN 35
4 NaN NaN NaN NaN NaN
5 NaN NaN 4 NaN 48
I've tried various attempts with pd.merge() and df.update() with no success
But I've come to terms with the fact that I don't even know what to properly call this particular challenge. Thank you for any suggestions!
Reproducible examples:
import pandas as pd
import numpy as np
df1 = pd.DataFrame({'Col_A': {1: np.nan, 2: '10', 4: '12'},
'Col_B': {1: '21', 2: np.nan, 4: '23'},
'Col_D': {1: np.nan, 2: '33', 4: '38'}})
df2 = pd.DataFrame({'Col_C': {2: '22', 3: np.nan, 5: '4'},
'Col_E': {2: 44, 3: 45, 5: 48}})
df1_desired = pd.DataFrame({'Col_A': {1: np.nan, 2: '10', 3: np.nan, 4: '12', 5: np.nan},
'Col_B': {1: '23', 2: np.nan, 3: np.nan, 4: '23', 5: np.nan},
'Col_C': {1: np.nan, 2: np.nan, 3: np.nan, 4: np.nan, 5: np.nan},
'Col_D': {1: np.nan, 2: '22', 3: np.nan, 4: np.nan, 5: '4'},
'Col_E': {1: np.nan, 2: np.nan, 3: np.nan, 4: np.nan, 5: np.nan}})
df2_desired = pd.DataFrame({'Col_A': {1: np.nan, 2: np.nan, 3: np.nan, 4: np.nan, 5: np.nan},
'Col_B': {1: np.nan, 2: np.nan, 3: np.nan, 4: np.nan, 5: np.nan},
'Col_C': {1: np.nan, 2: '22', 3: np.nan, 4: np.nan, 5: '4'},
'Col_D': {1: np.nan, 2: np.nan, 3: np.nan, 4: np.nan, 5: np.nan},
'Col_E': {1: np.nan, 2: '44', 3: '35', 4: np.nan, 5: '48'}})
# find the commons
common_cols = sorted(list(set().union(list(df1),list(df2))))
common_rows = sorted(list(set().union(list(df1.index),list(df2.index))))
df_common = pd.DataFrame(np.nan, index=common_rows, columns=common_cols)
# attempt at reshaping df1 with pd.merge
# https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.merge.html
df1_reshaped = pd.merge(df_common, df1, how='left', left_index=True, right_index=True)
# attempt at dropping duplicates for df1
#df1_reshaped = df1_reshaped[df1_reshaped.columns.drop(list(df1_reshaped.filter(regex='_x')))]
#df1_reshaped.columns = df_common.columns
# attempt with df.update()
# https://stackoverflow.com/questions/9787853/join-or-merge-with-overwrite-in-pandas
df1_updated=df_common.update(df1)