Note that you can get a lot more control over the output with some other packages. In the example below I'm using Tplyr and reporter. Tplyr generates the statistics and reporter will create the RTF. It takes a lot more work than table1. But you gain a lot more types of statistics and reports. You could basically produce any safety report.
library(Tplyr)
library(reporter)
dt <- tplyr_table(mtcars, am) %>%
add_layer(group_count(cyl)) %>%
add_layer(group_desc(mpg)) %>%
build()
tbl <- create_table(dt, show_cols = c("ord_layer_index", "row_label1",
"var1_0", "var1_1")) %>%
stub(c("ord_layer_index", "row_label1"), label = "Variables") %>%
define(ord_layer_index, label = "Variable", label_row = TRUE,
format = c("1" = "Cylinders",
"2" = "Miles Per Gallon"),
dedupe = TRUE, blank_after = TRUE) %>%
define(row_label1, label = "", indent = .25) %>%
define(var1_0, label = "Automatic", align = "center", n = 19) %>%
define(var1_1, label = "Manual", align = "center", n = 13)
pth <- file.path(tempdir(), "test1.rtf")
rpt <- create_report(pth,
output_type = "RTF",
orientation = "portrait") %>%
titles("Table 1.0",
"Characteristics of MTCars by Transmission Type",
"Population: All Cars") %>%
set_margins(top = 1, bottom = 1) %>%
add_content(tbl)
write_report(rpt)
file.show(pth)
Here is the RTF output:
