I want to change the HTML element, which the ID is D-image, and use it as a prediction model. I tried to change CSS but it won't let me save it. The only thing I want to do is change its CSS filter property and use a changed(means greyed) D-image element to predict. Here is my BODY HTML code
<div>Teachable Machine Image Model</div>
<button type="button" onclick="init()">Start</button>
<button type="button" onclick="predict()">predict</button>
<script class="jsbin" src="https://ajax.googleapis.com/ajax/libs/jquery/1/jquery.min.js"></script>
<div class="file-upload">
<button class="file-upload-btn" type="button" onclick="$('.file-upload-input').trigger( 'click' )">Add Image</button>
<div class="image-upload-wrap">
<input class="file-upload-input" type='file' onchange="readURL(this);" accept="image/*" />
<div class="drag-text">
<h3>Drag and drop a file or select add Image</h3>
</div>
</div>
<div class="file-upload-content">
<img class="file-upload-image" id="D-image" src="#" alt="your image" />
<div class="image-title-wrap">
<button type="button" onclick="removeUpload()" class="remove-image">Remove
<span class="image-title">Uploaded Image</span>
</button>
</div>
</div>
</div>
<div id="webcam-container"></div>
<div id="label-container"></div>
Here is my original javascript code
<script type="text/javascript">
// More API functions here:
// https://github.com/googlecreativelab/teachablemachine-community/tree/master/libraries/image
// the link to your model provided by Teachable Machine export panel
const URL = "https://teachablemachine.withgoogle.com/models/ca88ZGYrw/";
let model, webcam, labelContainer, maxPredictions;
// Load the image model and setup the webcam
async function init() {
const modelURL = URL + "model.json";
const metadataURL = URL + "metadata.json";
// load the model and metadata
// Refer to tmImage.loadFromFiles() in the API to support files from a file picker
// or files from your local hard drive
// Note: the pose library adds "tmImage" object to your window (window.tmImage)
model = await tmImage.load(modelURL, metadataURL);
maxPredictions = model.getTotalClasses();
labelContainer = document.getElementById("label-container");
for (let i = 0; i < maxPredictions; i++) { // and class labels
labelContainer.appendChild(document.createElement("div"));
}
}
// run the webcam image through the image model
async function predict() {
// predict can take in an image, video or canvas html element
var image = document.getElementById("D-image")
const prediction = await model.predict(image, false);
for (let i = 0; i < maxPredictions; i++) {
const classPrediction =
prediction[i].className + ": " + prediction[i].probability.toFixed(2);
labelContainer.childNodes[i].innerHTML = classPrediction;
}
}
</script>
I also tried this but when I do prediction it won't let me use the changed D-image element.
<script type="text/javascript">
// More API functions here:
// https://github.com/googlecreativelab/teachablemachine-community/tree/master/libraries/image
// the link to your model provided by Teachable Machine export panel
const URL = "https://teachablemachine.withgoogle.com/models/ca88ZGYrw/";
let model, webcam, labelContainer, maxPredictions;
// Load the image model and setup the webcam
async function init() {
const modelURL = URL + "model.json";
const metadataURL = URL + "metadata.json";
// load the model and metadata
// Refer to tmImage.loadFromFiles() in the API to support files from a file picker
// or files from your local hard drive
// Note: the pose library adds "tmImage" object to your window (window.tmImage)
model = await tmImage.load(modelURL, metadataURL);
maxPredictions = model.getTotalClasses();
labelContainer = document.getElementById("label-container");
for (let i = 0; i < maxPredictions; i++) { // and class labels
labelContainer.appendChild(document.createElement("div"));
}
}
// run the webcam image through the image model
async function predict() {
// predict can take in an image, video or canvas html element
var image = document.getElementById("D-image").style.webkitFilter = "grayscale(100%)";
const prediction = await model.predict(image, false);
for (let i = 0; i < maxPredictions; i++) {
const classPrediction =
prediction[i].className + ": " + prediction[i].probability.toFixed(2);
labelContainer.childNodes[i].innerHTML = classPrediction;
}
}
</script>
Is there any way to save changed CSS property for the next javascript code(execution)?