**
code editor: vscode
cmd: anaconda prompt
I followed the tutorial but why this error? **
first error was ModuleNotFoundError: No module named 'tensorflow' but i make env and install it second error was ModuleNotFoundError: No module named 'flask' but i make env and install it i fix them and they work on python How can I solve this?
# T81-558: Applications of Deep Neural Networks
# Module 13: Advanced/Other Topics
# Instructor: [Jeff Heaton](https://sites.wustl.edu/jeffheaton/), McKelvey School of Engineering, [Washington University in St. Louis](https://engineering.wustl.edu/Programs/Pages/default.aspx)
# For more information visit the [class website](https://sites.wustl.edu/jeffheaton/t81-558/).
# Deploy simple Keras tabular model with Flask only.
from flask import Flask, request, jsonify
import uuid
import os
from tensorflow.keras.models import load_model
import numpy as np
app = Flask(__name__)
# Used for validation
EXPECTED = {
"cylinders":{"min":3,"max":8},
"displacement":{"min":68.0,"max":455.0},
"horsepower":{"min":46.0,"max":230.0},
"weight":{"min":1613,"max":5140},
"acceleration":{"min":8.0,"max":24.8},
"year":{"min":70,"max":82},
"origin":{"min":1,"max":3}
}
# Load neural network when Flask boots up
model = load_model(os.path.join("../dnn/","mpg_model.h5"))
@app.route('/api/mpg', methods=['POST'])
def calc_mpg():
content = request.json
errors = []
# Check for valid input fields
for name in content:
if name in EXPECTED:
expected_min = EXPECTED[name]['min']
expected_max = EXPECTED[name]['max']
value = content[name]
if value < expected_min or value > expected_max:
errors.append(f"Out of bounds: {name}, has value of: {value}, but should be between {expected_min} and {expected_max}.")
else:
errors.append(f"Unexpected field: {name}.")
# Check for missing input fields
for name in EXPECTED:
if name not in content:
errors.append(f"Missing value: {name}.")
if len(errors) <1:
# Predict
x = np.zeros( (1,7) )
x[0,0] = content['cylinders']
x[0,1] = content['displacement']
x[0,2] = content['horsepower']
x[0,3] = content['weight']
x[0,4] = content['acceleration']
x[0,5] = content['year']
x[0,6] = content['origin']
pred = model.predict(x)
mpg = float(pred[0])
response = {"id":str(uuid.uuid4()),"mpg":mpg,"errors":errors}
else:
# Return errors
response = {"id":str(uuid.uuid4()),"errors":errors}
print(content['displacement'])
return jsonify(response)
if __name__ == '__main__':
app.run(host= '0.0.0.0',debug=True)
#conda
(tf-gpu) (HelloWold) C:\Users\ASUS\t81_558_deep_learning\py>python mpg_server_1.py
2020-05-09 17:25:38.498181: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll
Traceback (most recent call last):
File "mpg_server_1.py", line 26, in <module>
model = load_model(os.path.join("../dnn/","mpg_model.h5"))
File "C:\Users\ASUS\Envs\HelloWold\lib\site-packages\tensorflow\python\keras\saving\save.py", line 189, in load_model
loader_impl.parse_saved_model(filepath)
File "C:\Users\ASUS\Envs\HelloWold\lib\site-packages\tensorflow\python\saved_model\loader_impl.py", line 113, in parse_saved_model
constants.SAVED_MODEL_FILENAME_PB))
OSError: SavedModel file does not exist at: ../dnn/mpg_model.h5/{saved_model.pbtxt|saved_model.pb}
from https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_13_01_flask.ipynb https://www.youtube.com/watch?v=H73m9XvKHug&t=1056s