I have a dataset, df,
State Year 0 1 2 3 4 5
Georgia 2001 10,000 200 300 400 500 800
Georgia 2002 20,000 500 500 1,000 2,000 2,500
Georgia 2003 2,000 5,000 1,000 400 300 8,000
Washington 2001 1,000 10,000 6,000 8,000 9,900 10,000
Washington 2006 5,000 300 200 900 1,000 8,000
I would like my desired output to look like this:
State Year Age Population
Georgia 2001 0 10,000
Georgia 2002 0 20,000
Georgia 2003 0 2,000
Georgia 2001 1 200
Georgia 2002 1 500
Georgia 2003 1 5000
Georgia 2001 2 300
Georgia 2002 2 500
Georgia 2003 2 1000
Georgia 2001 3 400
Georgia 2002 3 1000
Georgia 2003 3 400
Georgia 2001 4 500
Georgia 2002 4 2000
Georgia 2003 4 300
Georgia 2001 5 800
Georgia 2002 5 2500
Georgia 2003 5 8000
Washington 2001 0 1000
Washington 2006 0 5000
Washington 2001 1 10000
Washington 2006 1 300
Washington 2001 2 6000
Washington 2006 2 200
Washington 2001 3 8000
Washington 2006 3 900
Washington 2001 4 9900
Washington 2006 4 1000
Washington 2001 5 10000
Washington 2006 5 8200
Here is my dput
structure(list(state = structure(c(1L, 1L, 1L, 2L, 2L), .Label = c("georgia",
"washington"), class = "factor"), year = c(2001L, 2002L, 2003L,
2001L, 2006L), X0 = structure(c(1L, 3L, 4L, 2L, 5L), .Label = c("10,000",
"1000", "20,000", "2000", "5000"), class = "factor"), X1 = structure(c(2L,
4L, 5L, 1L, 3L), .Label = c("10,000", "200", "300", "500", "5000"
), class = "factor"), X2 = c(300L, 500L, 1000L, 6000L, 200L),
X3 = c(400L, 1000L, 400L, 8000L, 900L), X4 = c(500L, 2000L,
300L, 99000L, 1000L), X5 = structure(c(3L, 2L, 4L, 1L, 4L
), .Label = c("10,000", "2500", "800", "8000"), class = "factor")), class = "data.frame", row.names
=
c(NA,
-5L))
This is what I have tried:
I know that I must groupby the state and the year as well as perform some type of pivot by possibly utilizing the gather() function
library(tidyr)
library(dplyr)
df1 <- gather(df, 0, 1, 2, 3, 4, 5 factor_key=TRUE)
df %>% groupby(State, Year) %>%
mutate('Age', 'Population')