I would like to find the fastest way to generate ~10^9 poisson random numbers in python/numpy—for instance, say I have a mean Poisson parameter (calculated elsewhere) of shape (1000, 2000), and I need 500 independent samples. This is a bottleneck in my code, taking several minutes to complete. I have tried three methods, but am looking for something faster:
import numpy as np
# example parameters
nsamples = 500
nmeas = 2000
ninputs = 1000
lambdax = np.ones([ninputs, nmeas]) * 20
# numpy, one big array
sample0 = np.random.poisson(lam=lambdax, size=(nsamples, ninputs, nmeas))
# numpy, current version where other code happens in the loop
sample1 = np.zeros([nsamples, ninputs, nmeas])
for i in range(nsamples):
sample1[i, :, :] = np.random.poisson(lam=lambdax)
# scipy
from scipy.stats import poisson
sample2 = poisson.rvs(lambdax, size=(nsamples, ninputs, nmeas))
Results:
sample0: 1 m 16 s
sample1: 1 m 20 s
sample2: 1 m 50 s
Not shown here, I am also parallelizing the independent samples via multiprocessing
, but the calculations are still pretty expensive for such large parameters. Is there a better way?