import pandas as pd
import numpy as np
data = {'Type_of_Institution': [np.nan, 'Institution of Nation Importance', 'Institution of Nation Importance', 'Institution of Nation Importance', 'Private Stand Alone'],
'City': [np.nan, 'Bangalore', 'Kozhikode', 'Mumbai', 'Navi Mumbai'],
'State': [np.nan, 'Karnataka', 'Kerala', 'Maharashtra', 'Maharashtra'],
'Percent_Placed': [np.nan, 100.0, 89.0, 99.0, 75.0],
'Percent_Placed_Sector': ['MNC', 50, 30, 40, 10],
'Unnamed: 6': ['FMCG', np.nan, 20, 20, 20],
'Unnamed: 7': ['Fintech', np.nan, 10, 10, 20],
'Unnamed: 8': ['Consultancy', 40, 10, 20, 10],
'Unnamed: 9': ['Financial', 10, 20, 10, 20],
'Unnamed: 10': ['Technology', np.nan, 10, np.nan, 10],
'Unnamed: 11': ['Others', np.nan, np.nan, np.nan, 10],
'Salary': ['Average', 6.11, 5.46, 5.82, 3.6],
'Unnamed: 13': ['Median', 6, 5, 5.96, 2.8],
'Unnamed: 14': ['Max', 16, 15.2, 14, 14],
'Unnamed: 15': ['Min', 3.4, 2.5, 2.84, 1.8]}
df = pd.DataFrame(data)
Type_of_Institution City State Percent_Placed Percent_Placed_Sector Unnamed: 6 Unnamed: 7 Unnamed: 8 Unnamed: 9 Unnamed: 10 Unnamed: 11 Salary Unnamed: 13 Unnamed: 14 Unnamed: 15
0 NaN NaN NaN NaN MNC FMCG Fintech Consultancy Financial Technology Others Average Median Max Min
1 Institution of Nation Importance Bangalore Karnataka 100.0 50 NaN NaN 40 10 NaN NaN 6.11 6 16 3.4
2 Institution of Nation Importance Kozhikode Kerala 89.0 30 20 10 10 20 10 NaN 5.46 5 15.2 2.5
3 Institution of Nation Importance Mumbai Maharashtra 99.0 40 20 10 20 10 NaN NaN 5.82 5.96 14 2.84
4 Private Stand Alone Navi Mumbai Maharashtra 75.0 10 20 20 10 20 10 10 3.6 2.8 14 1.8
This the data, I believe a loop can be used to do the change, I tried to create a loop but it was throwing lots of errors. Above is the image of dataframe.
Desired Output
Type_of_Institution City State Percent_Placed Percent_Placed_Sector FMCG Fintech Consultancy Financial Technology Others Salary Median Max Min
0 NaN NaN NaN NaN MNC FMCG Fintech Consultancy Financial Technology Others Average Median Max Min
1 Institution of Nation Importance Bangalore Karnataka 100.0 50 NaN NaN 40 10 NaN NaN 6.11 6 16 3.4
2 Institution of Nation Importance Kozhikode Kerala 89.0 30 20 10 10 20 10 NaN 5.46 5 15.2 2.5
3 Institution of Nation Importance Mumbai Maharashtra 99.0 40 20 10 20 10 NaN NaN 5.82 5.96 14 2.84
4 Private Stand Alone Navi Mumbai Maharashtra 75.0 10 20 20 10 20 10 10 3.6 2.8 14 1.8