Context
I am writing a signal interpreter using AVAudioEngine which will analyse microphone input. During development, I want to use a default input buffer so I don't have to make noises for the microphone to test my changes. I am developing using Catalyst.
Problem
I am using AVAudioSinkNode to get the sound buffer (the performance is allegedly better than using .installTap
). I am using (a subclass of) AVAudioSourceNode to generate a sine wave. When I connect these two together, I expect the sink node's callback to be called, but it is not. Neither is the source node's render block called.
let engine = AVAudioEngine()
let output = engine.outputNode
let outputFormat = output.inputFormat(forBus: 0)
let sampleRate = Float(outputFormat.sampleRate)
let sineNode440 = AVSineWaveSourceNode(
frequency: 440,
amplitude: 1,
sampleRate: sampleRate
)
let sink = AVAudioSinkNode { _, frameCount, audioBufferList -> OSStatus in
print("[SINK] + \(frameCount) \(Date().timeIntervalSince1970)")
return noErr
}
engine.attach(sineNode440)
engine.attach(sink)
engine.connect(sineNode440, to: sink, format: nil)
try engine.start()
Additional tests
If I connect engine.inputNode
to the sink (i.e., engine.connect(engine.inputNode, to: sink, format: nil)
), the sink callback is called as expected.
When I connect sineNode440
to engine.outputNode
, I can hear the sound and the render block is called as expected.
So both the source and the sink work individually when connected to device input/output, but not together.
AVSineWaveSourceNode
Not important to the question but relevant: AVSineWaveSourceNode is based on Apple sample code. This node produces the correct sound when connected to engine.outputNode
.
class AVSineWaveSourceNode: AVAudioSourceNode {
/// We need this separate class to be able to inject the state in the render block.
class State {
let amplitude: Float
let phaseIncrement: Float
var phase: Float = 0
init(frequency: Float, amplitude: Float, sampleRate: Float) {
self.amplitude = amplitude
phaseIncrement = (2 * .pi / sampleRate) * frequency
}
}
let state: State
init(frequency: Float, amplitude: Float, sampleRate: Float) {
let state = State(
frequency: frequency,
amplitude: amplitude,
sampleRate: sampleRate
)
self.state = state
let format = AVAudioFormat(standardFormatWithSampleRate: Double(sampleRate), channels: 1)!
super.init(format: format, renderBlock: { isSilence, _, frameCount, audioBufferList -> OSStatus in
print("[SINE GENERATION \(frequency) - \(frameCount)]")
let tau = 2 * Float.pi
let ablPointer = UnsafeMutableAudioBufferListPointer(audioBufferList)
for frame in 0..<Int(frameCount) {
// Get signal value for this frame at time.
let value = sin(state.phase) * amplitude
// Advance the phase for the next frame.
state.phase += state.phaseIncrement
if state.phase >= tau {
state.phase -= tau
}
if state.phase < 0.0 {
state.phase += tau
}
// Set the same value on all channels (due to the inputFormat we have only 1 channel though).
for buffer in ablPointer {
let buf: UnsafeMutableBufferPointer<Float> = UnsafeMutableBufferPointer(buffer)
buf[frame] = value
}
}
return noErr
})
for i in 0..<self.numberOfInputs {
print("[SINEWAVE \(frequency)] BUS \(i) input format: \(self.inputFormat(forBus: i))")
}
for i in 0..<self.numberOfOutputs {
print("[SINEWAVE \(frequency)] BUS \(i) output format: \(self.outputFormat(forBus: i))")
}
}
}