I ran into a problem using spark dataset! I keep getting the exception about encoders when I want to use case class the code is a simple one below:
case class OrderDataType (orderId: String, customerId: String, orderDate: String)
import spark.implicits._
val ds = spark.read.option("header", "true").csv("data\\orders.csv").as[OrderDataType]
I get this exception during compile:
Unable to find encoder for type OrderDataType. An implicit Encoder[OrderDataType] is needed to store OrderDataType instances in a Dataset. Primitive types (Int, String, etc) and Product types (case classes) are supported by importing spark.implicits._ Support for serializing other types will be added in future releases.
I have already added this: import spark.implicits._ but it doesn't solve the problem!
According to spark and scala documentation, the encoding must be done implicitly with scala!
What is wrong with this code and what should I do to fix it!