I'm afraid the idea of detecting never linked source files is not a fruitful one.
To build a program, CMake will not compile a source file if it not going to link the resulting object
file into the program. I can understand how you might think that this happens, but it doesn't happen.
CMake already does what you would like it to do and the same is true of every other build automation system going back to
their invention in the 1970s. The fundamental purpose of all
such systems is to ensure that the building of a program
compiles a source file name.(c|cc|f|m|...)
if and only if
the object file name.o
is going to be linked into the program
and is out of date or does not exist. You can always defeat this purpose by
egregiously bad coding of the project's build spec (CMakeLists.txt, Makefile, SConstruct, etc.),
but with CMake you would need to be really trying to do it, and
trying quite expertly.
If you do not want name.c
to be compiled and the object file name.o
linked into a target program, then you do not tell the build system
that name.o
or name.c
is a prerequisite of the program. Don't tell
it what you know is not true. It is elementary competence not to specify redundant prerequisites of
a build system target.
The linker will link all its input object files into an output
program without question. It does not ask whether or not they are "needed"
by the program because it cannot answer that question. Neither the
linker nor any possible static analysis tool can know what program
you intend to produce when you input some object files for linkage.
It can only be assumed that you intend to produce the program that
results from the linkage of those object files, assuming the
linkage is successful.
If those object files cannot be linked into a program at all, the linker will tell you
that, and why. Otherwise, if you have linked object files that you didn't
intend to link, you can only discover that for yourself, by noticing
the mistake in the build log, or failing that by testing the program and/or inspecting its contents and comparing
your observations with your expectations.
Given your choice of object files for linkage, you can instruct the linker
to detect any code sections or data sections it extracts those object files in
which no symbols are defined that can be referenced by the program, and to
throw away all such unreferenced input sections instead of linking them
into the program. This is called linktime "garbage collection". You tell the
linker to do it by passing the option -Wl,-gc-sections
in the
gcc
linkage command. See this question
to learn how to maximise the collectible garbage. This is what you
can do to remove redundant object code from the linkage.
But you can only collect any garbage from a program in this way if the program
is dynamically opaque, i.e not linked with the option -rdynamic
: then the global symbols defined in the program's static image are not visible
to the OS loader and cannot be referenced from outside its static image by dynamic
libraries in the same process. In this case the linker can determine by static
analysis that a symbol whose definition is not referenced in the program's static
image cannot be referenced at all, since it cannot be referenced dynamically,
and if all symbols defined in an input section are statically unreferenced then
it can garbage-collect the section.
If the program has been linked -rdynamic
then -Wl,-gc-sections
will
collect no garbage, and this is quite right, because if the program is
not dynamically opaque then it is impossible for static analysis to determine that anything
defined in its linkage cannot be referenced.
It's noteworthy that although -rdynamic
is not a default linkage
option for GCC, it is a default linkage option for CMake projects using
the GCC toolchain. So to use linktime garbage collection in CMake projects
you would always have to override the -rdynamic
default. And obviously it would only be
valid to do this if you have determined that it is alright for the program to
be dynamically opaque.